Publications

Refine Results

(Filters Applied) Clear All

Fun as a strategic advantage: applying lessons in engagement from commercial games to military logistics training

Summary

Digital games offer many elements to augment traditional classroom lectures and reading assignments. They enable players to explore concepts through repeat play in a low-risk environment, and allow players to integrate feedback given during gameplay and evaluate their own performance. Commercial games leverage a number of features to engage players and hold their attention. But do those engagement-improving methods have a place in instructional environments with a captive and motivated audience? Our experience building a logistics supply chain training game for the Marine Corps University suggests that yes; applying lessons in engagement from commercial games can both help improve player experience with the learning environment, and potentially improve learning outcomes.
READ LESS

Summary

Digital games offer many elements to augment traditional classroom lectures and reading assignments. They enable players to explore concepts through repeat play in a low-risk environment, and allow players to integrate feedback given during gameplay and evaluate their own performance. Commercial games leverage a number of features to engage players...

READ MORE

System adaptation as a trust response in tactical ad hoc networks

Published in:
IEEE MILCOM 2003, 13-16 October 2003, pp. 209-214.

Summary

While mobile ad hoc networks offer significant improvements for tactical communications, these networks are vulnerable to node capture and other forms of cyberattack. In this paper we evaluated via simulation of the impact of a passive attacker, a denial of service (DoS) attack, and a data swallowing attack. We compared two different adaptive network responses to these attacks against a baseline of no response for 10 and 20 node networks. Each response reflects a level of trust assigned to the captured node. Our simulation used a responsive variant of the ad hoc on-demand distance vector (AODV) routing algorithm and focused on the response performance. We assumed that the attacks had been detected and reported. We compared performance tradeoffs of attack, response, and network size by focusing on metrics such as "goodput", i.e., percentage of messages that reach the intended destination untainted by the captured node. We showed, for example, that under general conditions a DoS attack response should minimize attacker impact while a response to a data swallowing attack should minimize risk to the system and trust of the compromised node with most of the response benefit. We show that the best network response depends on the mission goals, network configuration, density, network performance, attacker skill, and degree of compromise.
READ LESS

Summary

While mobile ad hoc networks offer significant improvements for tactical communications, these networks are vulnerable to node capture and other forms of cyberattack. In this paper we evaluated via simulation of the impact of a passive attacker, a denial of service (DoS) attack, and a data swallowing attack. We compared...

READ MORE

Showing Results

1-2 of 2