Publications
Tagged As
In-grown diamond color centers with narrow inhomogeneous spectral distributions
Summary
Summary
We characterize silicon vacancies in a bulk diamond sample grown at MIT Lincoln Laboratory. The measured narrow, inhomogeneous spectral distribution indicates that they will be useful for implementing scalable quantum networks.
Impact of interconnected architectures on near-term quantum algorithms
Summary
Summary
Scaling quantum computers requires interconnected processors; however, the interconnected architecture's effect on computing performance is not well quantified. We assess the impact of architectures on algorithm performance and identify performance benefits relative to interconnect-free architectures.
High-fidelity control of a strongly coupled electro-nuclear spin-photon interface [e-print]
Summary
Summary
Long distance quantum networking requires combining efficient spin-photon interfaces with long-lived local memories. Group-IV color centers in diamond (SiV–, GeV–, and SnV–) are promising candidates for this application, containing an electronic spin-photon interface and dopant nuclear spin memory. Recent work has demonstrated state-of-the-art performance in spin-photon coupling and spin-spin entanglement...
A cloud-based brain connectivity analysis tool
Summary
Summary
With advances in high throughput brain imaging at the cellular and sub-cellular level, there is growing demand for platforms that can support high performance, large-scale brain data processing and analysis. In this paper, we present a novel pipeline that combines Accumulo, D4M, geohashing, and parallel programming to manage large-scale neuron...
Suppressing relaxation in superconducting qubits by quasiparticle pumping
Summary
Summary
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to...
The role of master clock stability in quantum information processing
Summary
Summary
Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturbations. In the case of the phase degree of freedom in a quantum superposition, however, the coherence that must...
The flux qubit revisited to enhance coherence and reproducibility
Summary
Summary
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40...
Resonance fluorescence from an artificial atom in squeezed vacuum
Summary
Summary
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing...
A near-quantum-limited Josephson traveling-wave parametric amplifier
Summary
Summary
Detecting single photon level signals--carriers of both classical and quantum information--is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz...
Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning
Summary
Summary
Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Although the source of this heating is not yet understood, several previous studies suggest that noise due to surface contaminants is the limiting heating mechanism in some instances. We demonstrate an improvement by a factor...