Publications

Refine Results

(Filters Applied) Clear All

Supervector LDA - a new approach to reduced-complexity i-vector language recognition

Published in:
INTERSPEECH 2012: 13th Annual Conf. of the Int. Speech Communication Assoc., 9-13 September 2012.

Summary

In this paper, we extend our previous analysis of Gaussian Mixture Model (GMM) subspace compensation techniques using Gaussian modeling in the supervector space combined with additive channel and observation noise. We show that under the modeling assumptions of a total-variability i-vector system, full Gaussian supervector scoring can also be performed cheaply in the total subspace, and that i-vector scoring can be viewed as an approximation to this. Next, we show that covariance matrix estimation in the i-vector space can be used to generate PCA estimates of supervector covariance matrices needed for Joint Factor Analysis (JFA). Finally, we derive a new technique for reduced-dimension i-vector extraction which we call Supervector LDA (SV-LDA), and demonstrate a 100-dimensional i-vector language recognition system with equivalent performance to a 600-dimensional version at much lower complexity.
READ LESS

Summary

In this paper, we extend our previous analysis of Gaussian Mixture Model (GMM) subspace compensation techniques using Gaussian modeling in the supervector space combined with additive channel and observation noise. We show that under the modeling assumptions of a total-variability i-vector system, full Gaussian supervector scoring can also be performed...

READ MORE

Exploring the impact of advanced front-end processing on NIST speaker recognition microphone tasks

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise properties, etc. In this paper, we explore alternate choices of preprocessing and examine their effects on speaker recognition performance. Specifically, we consider the effects of quantization, sampling rate, enhancement, and two-channel speech activity detection. Experiments on the NIST 2010 SRE interview microphone corpus demonstrate that performance can be dramatically improved with a different preprocessing chain.
READ LESS

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise...

READ MORE

Linear prediction modulation filtering for speaker recognition of reverberant speech

Published in:
Odyssey 2012, The Speaker and Language Recognition Workshop, 25-28 June 2012.

Summary

This paper proposes a framework for spectral enhancement of reverberant speech based on inversion of the modulation transfer function. All-pole modeling of modulation spectra of clean and degraded speech are utilized to derive the linear prediction inverse modulation transfer function (LP-IMTF) solution as a low-order IIR filter in the modulation envelope domain. By considering spectral estimation under speech presence uncertainty, speech presence probabilities are derived for the case of reverberation. Aside from enhancement, the LP-IMTF framework allows for blind estimation of reverberation time by extracting a minimum phase approximation of the short-time spectral channel impulse response. The proposed speech enhancement method is used as a front-end processing step for speaker recognition. When applied to the microphone condition of the NISTSRE 2010 with artificially added reverberation, the proposed spectral enhancement method yields significant improvements across a variety of performance metrics.
READ LESS

Summary

This paper proposes a framework for spectral enhancement of reverberant speech based on inversion of the modulation transfer function. All-pole modeling of modulation spectra of clean and degraded speech are utilized to derive the linear prediction inverse modulation transfer function (LP-IMTF) solution as a low-order IIR filter in the modulation...

READ MORE

Showing Results

1-3 of 3