Publications

Refine Results

(Filters Applied) Clear All

Probabilistic reasoning for streaming anomaly detection

Published in:
2012 SSP: 2012 IEEE Statistical Signal Processing Workshop, 5-8 August 2012, pp. 377-380.

Summary

In many applications it is necessary to determine whether an observation from an incoming high-volume data stream matches expectations or is anomalous. A common method for performing this task is to use an Exponentially Weighted Moving Average (EWMA), which smooths out the minor variations of the data stream. While EWMA is efficient at processing high-rate streams, it can be very volatile to abrupt transient changes in the data, losing utility for appropriately detecting anomalies. In this paper we present a probabilistic approach to EWMA which dynamically adapts the weighting based on the observation probability. This results in robustness to data anomalies yet quick adaptability to distributional data shifts.
READ LESS

Summary

In many applications it is necessary to determine whether an observation from an incoming high-volume data stream matches expectations or is anomalous. A common method for performing this task is to use an Exponentially Weighted Moving Average (EWMA), which smooths out the minor variations of the data stream. While EWMA...

READ MORE

FY11 Line-Supported Bio-Next Program - Multi-modal Early Detection Interactive Classifier (MEDIC) for mild traumatic brain injury (mTBI) triage

Summary

The Multi-modal Early Detection Interactive Classifier (MEDIC) is a triage system designed to enable rapid assessment of mild traumatic brain injury (mTBI) when access to expert diagnosis is limited as in a battlefield setting. MEDIC is based on supervised classification that requires three fundamental components to function correctly; these are data, features, and truth. The MEDIC system can act as a data collection device in addition to being an assessment tool. Therefore, it enables a solution to one of the fundamental challenges in understanding mTBI: the lack of useful data. The vision of MEDIC is to fuse results from stimulus tests in each of four modalitites - auditory, occular, vocal, and intracranial pressure - and provide them to a classifier. With appropriate data for training, the MEDIC classifier is expected to provide an immediate decision of whether the subject has a strong likelihood of having sustained an mTBI and therefore requires an expert diagnosis from a neurologist. The tests within each modalitity were designed to balance the capacity of objective assessment and the maturity of the underlying technology against the ability to distinguish injured from non-injured subjects according to published results. Selection of existing modalities and underlying features represents the best available, low cost, portable technology with a reasonable chance of success.
READ LESS

Summary

The Multi-modal Early Detection Interactive Classifier (MEDIC) is a triage system designed to enable rapid assessment of mild traumatic brain injury (mTBI) when access to expert diagnosis is limited as in a battlefield setting. MEDIC is based on supervised classification that requires three fundamental components to function correctly; these are...

READ MORE

Cyber situational awareness through operational streaming analysis

Published in:
MILCOM 2011, IEEE Military Communications Conf., 7-10 November 2011, pp. 1152-1157.

Summary

As the scope and scale of Internet traffic continue to increase the task of maintaining cyber situational awareness about this traffic becomes ever more difficult. There is strong need for real-time on-line algorithms that characterize high-speed / high-volume data to support relevant situational awareness. Recently, much work has been done to create and improve analysis algorithms that operate in a streaming fashion (minimal CPU and memory utilization) in order to calculate important summary statistics (moments) of this network data for the purpose of characterization. While the research literature contains improvements to streaming algorithms in terms of efficiency and accuracy (i.e. approximation with error bounds), the literature lacks research results that demonstrate streaming algorithms in operational situations. The focus of our work is the development of a live network situational awareness system that relies upon streaming algorithms for the determination of important stream characterizations and also for the detection of anomalous behavior. We present our system and discuss its applicability to situational awareness of high-speed networks. We present refinements and enhancements that we have made to a well-known streaming algorithm and improve its performance as applied within our system. We also present performance and detection results of the system when it is applied to a live high-speed mid-scale enterprise network.
READ LESS

Summary

As the scope and scale of Internet traffic continue to increase the task of maintaining cyber situational awareness about this traffic becomes ever more difficult. There is strong need for real-time on-line algorithms that characterize high-speed / high-volume data to support relevant situational awareness. Recently, much work has been done...

READ MORE

Information security for situational awareness in computer network defense

Published in:
Chapter Six, Situational Awareness in Computer Network Defense: Principles, Methods, and Applications, 2011, pp. 86-103.

Summary

Situational awareness - the perception of "what's going on" - is crucial in every field of human endeavor, especially so in the cyber world where most of the protections afforded by physical time and distance are taken away. Since ancient times, military science emphasized the importance of preserving your awareness of the battlefield and at the same time preventing your adversary from learning the true situation for as long as possible. Today cyber is officially recognized as a contested military domain like air, land, and sea. Therefore situational awareness in computer networks will be under attacks of military strength and will require military-grade protection. This chapter describes the emerging threats for computer SA, and the potential avenues of defense against them.
READ LESS

Summary

Situational awareness - the perception of "what's going on" - is crucial in every field of human endeavor, especially so in the cyber world where most of the protections afforded by physical time and distance are taken away. Since ancient times, military science emphasized the importance of preserving your awareness...

READ MORE

PANEMOTO: network visualization of security situational awareness through passive analysis

Summary

To maintain effective security situational awareness, administrators require tools that present up-to-date information on the state of the network in the form of 'at-a-glance' displays, and that enable rapid assessment and investigation of relevant security concerns through drill-down analysis capability. In this paper, we present a passive network monitoring tool we have developed to address these important requirements, known a Panemoto (PAssive NEtwork MOnitoring TOol). We show how Panemoto enumerates, describes, and characterizes all network components, including devices and connected networks, and delivers an accurate representation of the function of devices and logical connectivity of networks. We provide examples of Panemoto's output in which the network information is presented in two distinct but related formats: as a clickable network diagram (through the use of NetViz), a commercially available graphical display environment) and as statically-linked HTML pages, viewable in any standard web browser. Together, these presentation techniques enable a more complete understanding of the security situation of the network than each does individually.
READ LESS

Summary

To maintain effective security situational awareness, administrators require tools that present up-to-date information on the state of the network in the form of 'at-a-glance' displays, and that enable rapid assessment and investigation of relevant security concerns through drill-down analysis capability. In this paper, we present a passive network monitoring tool...

READ MORE

Passive operating system identification from TCP/IP packet headers

Published in:
ICDM Workshop on Data Mining for Computer Security, DMSEC, 19 November 2003.

Summary

Accurate operating system (OS) identification by passive network traffic analysis can continuously update less-frequent active network scans and help interpret alerts from intrusion detection systems. The most recent open-source passive OS identification tool (ettercap) rejects 70% of all packets and has a high 75-class error rate of 30% for non-rejected packets on unseen test data. New classifiers were developed using machine-learning approaches including cross-validation testing, grouping OS names into fewer classes, and evaluating alternate classifier types. Nearest neighbor and binary tree classifiers provide a low 9-class OS identification error rate of roughly 10% on unseen data without rejecting packets. This error rate drops to nearly zero when 10% of the packets are rejected.
READ LESS

Summary

Accurate operating system (OS) identification by passive network traffic analysis can continuously update less-frequent active network scans and help interpret alerts from intrusion detection systems. The most recent open-source passive OS identification tool (ettercap) rejects 70% of all packets and has a high 75-class error rate of 30% for non-rejected...

READ MORE