Publications

Refine Results

(Filters Applied) Clear All

Cryptography for Big Data security

Published in:
Chapter 10 in Big Data: Storage, Sharing, and Security, 2016, pp. 214-87.

Summary

This chapter focuses on state-of-the-art provably secure cryptographic techniques for protecting big data applications. We do not focus on more established, and commonly available cryptographic solutions. The goal is to inform practitioners of new techniques to consider as they develop new big data solutions rather than to summarize the current best practice for securing data.
READ LESS

Summary

This chapter focuses on state-of-the-art provably secure cryptographic techniques for protecting big data applications. We do not focus on more established, and commonly available cryptographic solutions. The goal is to inform practitioners of new techniques to consider as they develop new big data solutions rather than to summarize the current...

READ MORE

Cryptographically secure computation

Published in:
Computer, Vol. 48, No. 4, April 2015, pp. 78-81.

Summary

Researchers are making secure multiparty computation--a cryptographic technique that enables information sharing and analysis while keeping sensitive inputs secret--faster and easier to use for application software developers.
READ LESS

Summary

Researchers are making secure multiparty computation--a cryptographic technique that enables information sharing and analysis while keeping sensitive inputs secret--faster and easier to use for application software developers.

READ MORE

HEtest: a homomorphic encryption testing framework

Published in:
3rd Workshop on Encrypted Computing and Applied Homomorphic Cryptography (WAHC 2015), 30 January 2015.

Summary

In this work, we present a generic open-source software framework that can evaluate the correctness and performance of homomorphic encryption software. Our framework, called HEtest, automates the entire process of a test: generation of data for testing (such as circuits and inputs), execution of a test, comparison of performance to an insecure baseline, statistical analysis of the test results, and production of a LaTeX report. To illustrate the capability of our framework, we present a case study of our analysis of the open-source HElib homomorphic encryption software. We stress though that HEtest is written in a modular fashion, so it can easily be adapted to test any homomorphic encryption software.
READ LESS

Summary

In this work, we present a generic open-source software framework that can evaluate the correctness and performance of homomorphic encryption software. Our framework, called HEtest, automates the entire process of a test: generation of data for testing (such as circuits and inputs), execution of a test, comparison of performance to...

READ MORE

Automated assessment of secure search systems

Summary

This work presents the results of a three-year project that assessed nine different privacy-preserving data search systems. We detail the design of a software assessment framework that focuses on low system footprint, repeatability, and reusability. A unique achievement of this project was the automation and integration of the entire test process, from the production and execution of tests to the generation of human-readable evaluation reports. We synthesize our experiences into a set of simple mantras that we recommend following in the design of any assessment framework.
READ LESS

Summary

This work presents the results of a three-year project that assessed nine different privacy-preserving data search systems. We detail the design of a software assessment framework that focuses on low system footprint, repeatability, and reusability. A unique achievement of this project was the automation and integration of the entire test...

READ MORE

Computing on masked data: a high performance method for improving big data veracity

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Along with these standard three V's of big data, an emerging fourth "V" is veracity, which addresses the confidentiality, integrity, and availability of the data. Traditional cryptographic techniques that ensure the veracity of data can have overheads that are too large to apply to big data. This work introduces a new technique called Computing on Masked Data (CMD), which improves data veracity by allowing computations to be performed directly on masked data and ensuring that only authorized recipients can unmask the data. Using the sparse linear algebra of associative arrays, CMD can be performed with significantly less overhead than other approaches while still supporting a wide range of linear algebraic operations on the masked data. Databases with strong support of sparse operations, such as SciDB or Apache Accumulo, are ideally suited to this technique. Examples are shown for the application of CMD to a complex DNA matching algorithm and to database operations over social media data.
READ LESS

Summary

The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Along with these standard three V's of big data, an emerging fourth "V" is veracity, which addresses the confidentiality, integrity, and availability of the data. Traditional cryptographic...

READ MORE

Computing on masked data: a high performance method for improving big data veracity

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Along with these standard three V's of big data, an emerging fourth "V" is veracity, which addresses the confidentiality, integrity, and availability of the data. Traditional cryptographic techniques that ensure the veracity of data can have overheads that are too large to apply to big data. This work introduces a new technique called Computing on Masked Data (CMD), which improves data veracity by allowing computations to be performed directly on masked data and ensuring that only authorized recipients can unmask the data. Using the sparse linear algebra of associative arrays, CMD can be performed with significantly less overhead than other approaches while still supporting a wide range of linear algebraic operations on the masked data. Databases with strong support of sparse operations, such as SciDB or Apache Accumulo, are ideally suited to this technique. Examples are shown for the application of CMD to a complex DNA matching algorithm and to database operations over social media data.
READ LESS

Summary

The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Along with these standard three V's of big data, an emerging fourth "V" is veracity, which addresses the confidentiality, integrity, and availability of the data. Traditional cryptographic...

READ MORE

Showing Results

1-6 of 6