Publications

Refine Results

(Filters Applied) Clear All

Cryptography for Big Data security

Published in:
Chapter 10 in Big Data: Storage, Sharing, and Security, 2016, pp. 214-87.

Summary

This chapter focuses on state-of-the-art provably secure cryptographic techniques for protecting big data applications. We do not focus on more established, and commonly available cryptographic solutions. The goal is to inform practitioners of new techniques to consider as they develop new big data solutions rather than to summarize the current best practice for securing data.
READ LESS

Summary

This chapter focuses on state-of-the-art provably secure cryptographic techniques for protecting big data applications. We do not focus on more established, and commonly available cryptographic solutions. The goal is to inform practitioners of new techniques to consider as they develop new big data solutions rather than to summarize the current...

READ MORE

Cryptographically secure computation

Published in:
Computer, Vol. 48, No. 4, April 2015, pp. 78-81.

Summary

Researchers are making secure multiparty computation--a cryptographic technique that enables information sharing and analysis while keeping sensitive inputs secret--faster and easier to use for application software developers.
READ LESS

Summary

Researchers are making secure multiparty computation--a cryptographic technique that enables information sharing and analysis while keeping sensitive inputs secret--faster and easier to use for application software developers.

READ MORE

A survey of cryptographic approaches to securing big-data analytics in the cloud

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows reasoning about relevant threats and security goals. We then survey three cryptographic techniques - homomorphic encryption, verifiable computation, and multi-party computation - that can be used to achieve these goals. We describe the cryptographic techniques in the context of our cloud model and highlight the differences in performance cost associated with each.
READ LESS

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows...

READ MORE

A survey of cryptographic approaches to securing big-data analytics in the cloud

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows reasoning about relevant threats and security goals. We then survey three cryptographic techniques - homomorphic encryption, verifiable computation, and multi-party computation - that can be used to achieve these goals. We describe the cryptographic techniques in the context of our cloud model and highlight the differences in performance cost associated with each.
READ LESS

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows...

READ MORE

Showing Results

1-4 of 4