Publications
Analog coupled oscillator based weighted Ising machine
Summary
Summary
We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the...
Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography
Summary
Summary
Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...
Chip-scale molecular clock
Summary
Summary
An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small...
Linear and rotational microhydraulic actuators driven by electrowetting
Summary
Summary
Microhydraulic actuators offer a new way to convert electrical power to mechanical power on a microscale with an unmatched combination of power density and efficiency. Actuators work by combining surface tension force contributions from a large number of droplets distorted by electrowetting electrodes. This paper reports on the behavior of...
Valleytronics: opportunities, challenges, and paths forward
Summary
Summary
A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes...
Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry
Summary
Summary
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to...
Optical Nondestructive Dynamic Measurements of Wafer-Scale Encapsulated Nanofluidic Channels
Summary
Summary
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed...
Highly Efficient All-Optical Beam Modulation Utilizing Thermo-optic Effects
Summary
Summary
Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane...
Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines
Summary
Summary
We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism...
Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives
Summary
Summary
Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical...