Publications

Refine Results

(Filters Applied) Clear All

Robust network protocols for large swarms of small UAVs

Summary

In this work, we detail a synchronized channel hopping network for autonomous swarms of small unmanned aerial vehicles (UAVs) conducting intelligence, surveillance, and reconnaissance (ISR) missions in the presence of interference and jamming. The core component of our design is Queue Length Informed Maximal Matching (QLIMM), a distributed transmission scheduling protocol that exchanges queue state information between nodes to assign subdivisions of the swarm to orthogonal hopping patterns in response to the network’s throughput demands. QLIMM efficiently allocates channel resources across large networks without relying on any centralized control or pre-planned traffic patterns, which is in the spirit of a swarming capability. However, given that the control messaging must scale up with the swarm’s size and the challenging interference environments we consider, fragility could be a concern. To observe under what conditions control fails, we test our protocol against both simulated partial-band noise jamming and background interference. For the latter, we use data collected from a small unmanned aircraft system to characterize the interference seen by a UAV in the 2.4 and 5 GHz bands in both urban and rural settings. These measurements show that the interference can be 15 dB higher at a 50-meter flight altitude when compared to observations on the ground. Using this data, we conduct extensive network simulations of QLIMM in Riverbed Modeler to show that, under moderate jamming and interference, it outperforms traditional channel access methods as well as other scheduling protocols that do not pass queue state information.
READ LESS

Summary

In this work, we detail a synchronized channel hopping network for autonomous swarms of small unmanned aerial vehicles (UAVs) conducting intelligence, surveillance, and reconnaissance (ISR) missions in the presence of interference and jamming. The core component of our design is Queue Length Informed Maximal Matching (QLIMM), a distributed transmission scheduling...

READ MORE

A hands-on middle-school robotics software program at MIT

Summary

Robotics competitions at the high school level attract a large number of students across the world. However, there is little emphasis on leveraging robotics to get middle school students excited about pursuing STEM education. In this paper, we describe a new program that targets middle school students in a local, four-week setting at the Massachusetts Institute of Technology (MIT). It aims to excite students by teaching the very basics of computer vision and robotics. The students program mini car-like robots, equipped with state-of-the-art computers, to navigate autonomously in a mock race track. We describe the hardware and software infrastructure that enables the program, the details of our curriculum, and the results of a short assessment. In addition, we describe four short programs, as well as a session where we teach high school teachers how to teach similar courses at their schools to their own students. The self-assessment indicates that the students feel more confident in programming and robotics after leaving the program, which we hope will enable them to pursue STEM education and robotics initiatives at school.
READ LESS

Summary

Robotics competitions at the high school level attract a large number of students across the world. However, there is little emphasis on leveraging robotics to get middle school students excited about pursuing STEM education. In this paper, we describe a new program that targets middle school students in a local...

READ MORE

Prototype and analytics for discovery and exploitation of threat networks on social media

Published in:
2019 European Intelligence and Security Informatics Conference, EISIC, 26-27 November 2019.

Summary

Identifying and profiling threat actors are high priority tasks for a number of governmental organizations. These threat actors may operate actively, using the Internet to promote propaganda, recruit new members, or exert command and control over their networks. Alternatively, threat actors may operate passively, demonstrating operational security awareness online while using their Internet presence to gather information they need to pose an offline physical threat. This paper presents a flexible new prototype system that allows analysts to automatically detect, monitor and characterize threat actors and their networks using publicly available information. The proposed prototype system fills a need in the intelligence community for a capability to automate manual construction and analysis of online threat networks. Leveraging graph sampling approaches, we perform targeted data collection of extremist social media accounts and their networks. We design and incorporate new algorithms for role classification and radicalization detection using insights from social science literature of extremism. Additionally, we develop and implement analytics to facilitate monitoring the dynamic social networks over time. The prototype also incorporates several novel machine learning algorithms for threat actor discovery and characterization, such as classification of user posts into discourse categories, user post summaries and gender prediction.
READ LESS

Summary

Identifying and profiling threat actors are high priority tasks for a number of governmental organizations. These threat actors may operate actively, using the Internet to promote propaganda, recruit new members, or exert command and control over their networks. Alternatively, threat actors may operate passively, demonstrating operational security awareness online while...

READ MORE

Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss the use of PROLITH, a lithography simulation tool, to predict 3-D photoresist profiles from grayscale mask designs. Several examples of optical microsystems and microelectromechanical systems where PROLITH was used to validate the mask design prior to implementation in the microfabrication process are presented. In all examples, PROLITH was able to accurately and quantitatively predict resist profiles, which reduced both design time and the number of trial photomasks, effectively reducing the cost of component fabrication.
READ LESS

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...

READ MORE

Approaches for language identification in mismatched environments

Summary

In this paper, we consider the task of language identification in the context of mismatch conditions. Specifically, we address the issue of using unlabeled data in the domain of interest to improve the performance of a state-of-the-art system. The evaluation is performed on a 9-language set that includes data in both conversational telephone speech and narrowband broadcast speech. Multiple experiments are conducted to assess the performance of the system in this condition and a number of alternatives to ameliorate the drop in performance. The best system evaluated is based on deep neural network (DNN) bottleneck features using i-vectors utilizing a combination of all the approaches proposed in this work. The resulting system improved baseline DNN system performance by 30%.
READ LESS

Summary

In this paper, we consider the task of language identification in the context of mismatch conditions. Specifically, we address the issue of using unlabeled data in the domain of interest to improve the performance of a state-of-the-art system. The evaluation is performed on a 9-language set that includes data in...

READ MORE

Automated assessment of secure search systems

Summary

This work presents the results of a three-year project that assessed nine different privacy-preserving data search systems. We detail the design of a software assessment framework that focuses on low system footprint, repeatability, and reusability. A unique achievement of this project was the automation and integration of the entire test process, from the production and execution of tests to the generation of human-readable evaluation reports. We synthesize our experiences into a set of simple mantras that we recommend following in the design of any assessment framework.
READ LESS

Summary

This work presents the results of a three-year project that assessed nine different privacy-preserving data search systems. We detail the design of a software assessment framework that focuses on low system footprint, repeatability, and reusability. A unique achievement of this project was the automation and integration of the entire test...

READ MORE

Ultrawideband time-delay steered UHF dipole linear array antenna

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of the prototype antenna in an anechoic chamber demonstrate the antenna's reflection coefficient and radiation gain pattern performance.
READ LESS

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to...

READ MORE

Ultrawideband cavity-backed resistively loaded planar dipole array for ground penetrating radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance of the UWB array is quantified by moment method simulations of the electromagnetic field penetration into lossy soil. Integration of the UWB array onto vehicle is discussed.
READ LESS

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance...

READ MORE

Pixel-processing imager development for directed energy applications

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal plane readout bandwidth. In this paper, we explore the applicability of an emerging pixel-processing imager (PPI) technology to these challenges. The on-focal-plane signal processing capabilities of the MIT Lincoln Laboratory PPI technology have recently been extended in support of directed energy applications. We describe this work as well as early results from a new PPI-based short-wave-infrared focal plane readout capable of supporting diverse applications such as low-latency Shack-Hartmann wavefront sensing, centroid computation, and Fitts correlation tracking.
READ LESS

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal...

READ MORE

Multifunction phased array radar (MPAR) spectral usage analysis

Published in:
MIT Lincoln Laboratory Report ATC-395

Summary

This report addressed two technical risks associated with replacing current air traffic and weather surveillance radars with a single type of multifunction phased array radar (MPAR). The first risk is whether radio spectrum usage would increase with the MPAR network and whether the allocated band will have enough spectral space. This question is addressed in two steps. First, single-radar spectrum usage is estimated based on certain assumptions regarding the radar design. Second, locations based on a previous radar placement study are used together with a terrain-dependent propagation model to compute the number of frequency channels needed at each site. We conclude that the overall spectrum usage is likely to increase with MPAR, but that the targeted window in S band will be able to accommodate the occupancy at all sites. The second risk is whether self-interference will limit the ability of the MPAR to operate asynchronously and adaptively on different antenna faces. This question is addressed by employing a simple bistatic ground clutter model to characterize the interference between adjacent faces. We conclude that some interference is unavoidable, but it would likely only occur during times when a transmit beam is at its maximum off-broadside angle (~2% of the time).
READ LESS

Summary

This report addressed two technical risks associated with replacing current air traffic and weather surveillance radars with a single type of multifunction phased array radar (MPAR). The first risk is whether radio spectrum usage would increase with the MPAR network and whether the allocated band will have enough spectral space...

READ MORE

Showing Results

1-10 of 13