Publications

Refine Results

(Filters Applied) Clear All

The AFRL-MITLL WMT16 news-translation task systems

Published in:
Proc. First Conf. on Machine Translation, Vol. 2, 11-12 August 2016, pp. 296-302.

Summary

This paper describes the AFRL-MITLL statistical machine translation systems and the improvements that were developed during the WMT16 evaluation campaign. New techniques applied this year include Neural Machine Translation, a unique selection process for language modelling data, additional out-of-vocabulary transliteration techniques, and morphology generation.
READ LESS

Summary

This paper describes the AFRL-MITLL statistical machine translation systems and the improvements that were developed during the WMT16 evaluation campaign. New techniques applied this year include Neural Machine Translation, a unique selection process for language modelling data, additional out-of-vocabulary transliteration techniques, and morphology generation.

READ MORE

Operational assessment of keyword search on oral history

Published in:
10th Language Resources and Evaluation Conf., LREC 2016, 23-8 May 2016.

Summary

This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted value on human search capability through an information retrieval task on Mechanical Turk. We use English oral history data collected by StoryCorps, a national organization that provides all people with the opportunity to record, share and preserve their stories, and control for a variety of demographics including age, gender, birthplace, and dialect on four different training set sizes. We show comparable search performance using a standard speech recognition system as with hand-transcribed data, which is promising for increased accessibility of conversational speech and oral history archives.
READ LESS

Summary

This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted...

READ MORE

A fun and engaging interface for crowdsourcing named entities

Published in:
10th Language Resources and Evaluation Conf., LREC 2016, 23-28 May 2016.

Summary

There are many current problems in natural language processing that are best solved by training algorithms on an annotated in-language, in-domain corpus. The more representative the training corpus is of the test data, the better the algorithm will perform, but also the less likely it is that such a corpus has already been annotated. Annotating corpora for natural language processing tasks is typically a time consuming and expensive process. In this paper, we provide a case study in using crowd sourcing to curate an in-domain corpus for named entity recognition, a common problem in natural language processing. In particular, we present our use of fun, engaging user interfaces as a way to entice workers to partake in our crowd sourcing task while avoiding inflating our payments in a way that would attract more mercenary workers than conscientious ones. Additionally, we provide a survey of alternate interfaces for collecting annotations of named entities and compare our approach to those systems.
READ LESS

Summary

There are many current problems in natural language processing that are best solved by training algorithms on an annotated in-language, in-domain corpus. The more representative the training corpus is of the test data, the better the algorithm will perform, but also the less likely it is that such a corpus...

READ MORE

Analysis of factors affecting system performance in the ASpIRE challenge

Published in:
2015 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2015, 13-17 December 2015.

Summary

This paper presents an analysis of factors affecting system performance in the ASpIRE (Automatic Speech recognition In Reverberant Environments) challenge. In particular, overall word error rate (WER) of the solver systems is analyzed as a function of room, distance between talker and microphone, and microphone type. We also analyze speech activity detection performance of the solver systems and investigate its relationship to WER. The primary goal of the paper is to provide insight into the factors affecting system performance in the ASpIRE evaluation set across many systems given annotations and metadata that are not available to the solvers. This analysis will inform the design of future challenges and provide insight into the efficacy of current solutions addressing noisy reverberant speech in mismatched conditions.
READ LESS

Summary

This paper presents an analysis of factors affecting system performance in the ASpIRE (Automatic Speech recognition In Reverberant Environments) challenge. In particular, overall word error rate (WER) of the solver systems is analyzed as a function of room, distance between talker and microphone, and microphone type. We also analyze speech...

READ MORE

The MITLL-AFRL IWSLT 2015 Systems

Summary

This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to English and English to Chinese. ASR systems are also improved by reining improvements developed last year. Finally, we combine our ASR and MT systems to produce a English to Chinese SLT system.
READ LESS

Summary

This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to...

READ MORE

The AFRL-MITLL WMT15 System: there's more than one way to decode it!

Published in:
Proc. 10th Workshop on Statistical Machine Translation, 17-18 September 2015, pp. 112-9.

Summary

This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems with different decoding strategies. Out of vocabulary words were addressed with named entity postprocessing.
READ LESS

Summary

This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems...

READ MORE

The MITLL/AFRL IWSLT-2014 MT System

Summary

This report summarizes the MITLL-AFRL MT and ASR systems and the experiments run using them during the 2014 IWSLT evaluation campaign. Our MT system is much improved over last year, owing to integration of techniques such as PRO and DREM optimization, factored language models, neural network joint model rescoring, multiple phrase tables, and development set creation. We focused our efforts this year on the tasks of translating from Arabic, Russian, Chinese, and Farsi into English, as well as translating from English to French. ASR performance also improved, partly due to increased efforts with deep neural networks for hybrid and tandem systems. Work focused on both the English and Italian ASR tasks.
READ LESS

Summary

This report summarizes the MITLL-AFRL MT and ASR systems and the experiments run using them during the 2014 IWSLT evaluation campaign. Our MT system is much improved over last year, owing to integration of techniques such as PRO and DREM optimization, factored language models, neural network joint model rescoring, multiple...

READ MORE

Using deep belief networks for vector-based speaker recognition

Published in:
INTERSPEECH 2014: 15th Annual Conf. of the Int. Speech Communication Assoc., 14-18 September 2014.

Summary

Deep belief networks (DBNs) have become a successful approach for acoustic modeling in speech recognition. DBNs exhibit strong approximation properties, improved performance, and are parameter efficient. In this work, we propose methods for applying DBNs to speaker recognition. In contrast to prior work, our approach to DBNs for speaker recognition starts at the acoustic modeling layer. We use sparse-output DBNs trained with both unsupervised and supervised methods to generate statistics for use in standard vector-based speaker recognition methods. We show that a DBN can replace a GMM UBM in this processing. Methods, qualitative analysis, and results are given on a NIST SRE 2012 task. Overall, our results show that DBNs show competitive performance to modern approaches in an initial implementation of our framework.
READ LESS

Summary

Deep belief networks (DBNs) have become a successful approach for acoustic modeling in speech recognition. DBNs exhibit strong approximation properties, improved performance, and are parameter efficient. In this work, we propose methods for applying DBNs to speaker recognition. In contrast to prior work, our approach to DBNs for speaker recognition...

READ MORE

Content+context=classification: examining the roles of social interactions and linguist content in Twitter user classification

Published in:
Proc. Second Workshop on Natural Language Processing for Social Media, SocialNLP, 24 August 2014, pp. 59-65.

Summary

Twitter users demonstrate many characteristics via their online presence. Connections, community memberships, and communication patterns reveal both idiosyncratic and general properties of users. In addition, the content of tweets can be critical for distinguishing the role and importance of a user. In this work, we explore Twitter user classification using context and content cues. We construct a rich graph structure induced by hashtags and social communications in Twitter. We derive features from this graph structure - centrality, communities, and local flow of information. In addition, we perform detailed content analysis on tweets looking at offensiveness and topics. We then examine user classification and the role of feature types (context, content) and learning methods (propositional, relational) through a series of experiments on annotated data. Our work contrasts with prior approaches in that we use relational learning and alternative, non-specialized feature sets. Our goal is to understand how both content and context are predictive of user characteristics. Experiments demonstrate that the best performance for user classification uses relational learning with varying content and context features.
READ LESS

Summary

Twitter users demonstrate many characteristics via their online presence. Connections, community memberships, and communication patterns reveal both idiosyncratic and general properties of users. In addition, the content of tweets can be critical for distinguishing the role and importance of a user. In this work, we explore Twitter user classification using...

READ MORE

VizLinc: integrating information extraction, search, graph analysis, and geo-location for the visual exploration of large data sets

Published in:
Proc. KDD 2014 Workshop on Interactive Data Exploration and Analytics, IDEA, 24 August 2014, pp. 10-18.

Summary

In this demo paper we introduce VizLinc; an open-source software suite that integrates automatic information extraction, search, graph analysis, and geo-location for interactive visualization and exploration of large data sets. VizLinc helps users in: 1) understanding the type of information the data set under study might contain, 2) finding patterns and connections between entities, and 3) narrowing down the corpus to a small fraction of relevant documents that users can quickly read. We apply the tools offered by VizLinc to a subset of the New York Times Annotated Corpus and present use cases that demonstrate VizLinc's search and visualization features.
READ LESS

Summary

In this demo paper we introduce VizLinc; an open-source software suite that integrates automatic information extraction, search, graph analysis, and geo-location for interactive visualization and exploration of large data sets. VizLinc helps users in: 1) understanding the type of information the data set under study might contain, 2) finding patterns...

READ MORE