Publications

Refine Results

(Filters Applied) Clear All

Wind information requirements for NextGen applications phase 7 report

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter fixes down to 7,000' AGL regardless of the forecast quality provided. Below 7,000' AGL, RTA performance significantly degraded demonstrating around 80% compliance under the best forecast and operating conditions. This report also provides a comprehensive lexicon of aviation and air traffic control related "wind" terms.
READ LESS

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter...

READ MORE

Wind Information Requirements for NextGen Operations Phase 5 Report(13.64 MB)

Published in:
Project Report ATC-439, MIT Lincoln Laboratory

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating aircraft. The work described in this report summarizes the major activities conducted in the current phase of this program which builds upon prior work.
READ LESS

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating...

READ MORE

Wind information requirements for NextGen operations, phase 5 report

Published in:
Project Report ATC-439, MIT Lincoln Laboratory

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating aircraft. The work described in this report summarizes the major activities conducted in the current phase of this program which builds upon prior work. The major objectives were: 1. Support RTCA Special Committee-206 Aeronautical Information and Meteorological Data Link Services and co-chair a sub-group responsible for developing the document "Guidance for Data Linking Forecast and Real-Time Wind Information to Aircraft." 2. Analyze the performance of publicly available forecast as compared to in-situ reported atmospheric conditions, specifically comparing Global Forecast System (GFS) and High Resolution Rapid Refresh (HRRR) forecast data to recorded in-flight weather Meteorological Data Collection and Reporting System (MDCRS) data. 3. Analyze current and future Flight Management Systems (FMSs) to conduct operations at significantly lower altitudes than previous studies. 4. Evaluate potential sources of aircraft-derived winds to better support 4D-TBO activities. 5. Provide recommendations for high-value future work.
READ LESS

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating...

READ MORE

Aircraft laser strike geolocation system

Published in:
17th AIAA Aviation Technology, Integration, and Operations Conf., 5-9 June 2017.

Summary

Laser strikes against aircraft are increasing at an alarming rate, driven by the availability of cheap powerful lasers and a lack of deterrence due to the challenges of locating and apprehending perpetrators. Although window coatings and pilot goggles effectively block laser light, uptake has been low due to high cost and pilot reluctance. This paper describes the development and testing of a proof-of-concept ground based sensor system to rapidly geolocate the origin of a laser beam in a protected region of airspace and disseminate this information to law enforcement to allow a timely and targeted response. Geolocation estimates with accuracies of better than 20 m have been demonstrated within 30 seconds of an event at a range of 8.9 nmi with a 450 mW laser. Recommendations for an operational prototype at an airport are also described.
READ LESS

Summary

Laser strikes against aircraft are increasing at an alarming rate, driven by the availability of cheap powerful lasers and a lack of deterrence due to the challenges of locating and apprehending perpetrators. Although window coatings and pilot goggles effectively block laser light, uptake has been low due to high cost...

READ MORE

Wind information requirements for NextGen applications phase 4 final report(5.87 MB)

Published in:
Project Report ATC-431, MIT Lincoln Laboratory

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in this report summarizes the activities conducted in FY15, which builds upon prior work.
READ LESS

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in...

READ MORE

Terminal Flight Data Manager (TFDM) environmental benefits assessment(2.35 MB)

Published in:
Project Report ATC-420, MIT Lincoln Laboratory

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects.
READ LESS

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects.

READ MORE

Terminal Flight Data Manager (TFDM) runway balancing capability assessment(2.48 MB)

Published in:
Project Report ATC-421, MIT Lincoln Laboratory

Summary

Two of the capabilities being considered for the Terminal Flight Data Manager (TFDM) automation system are an airport resource information platform for departure-demand allocation and a runway balancing tool. This document reports the potential delay-reduction benefits of both capabilities at three case-study airports that were considered representative of the range of airports considered for TFDM deployment.
READ LESS

Summary

Two of the capabilities being considered for the Terminal Flight Data Manager (TFDM) automation system are an airport resource information platform for departure-demand allocation and a runway balancing tool. This document reports the potential delay-reduction benefits of both capabilities at three case-study airports that were considered representative of the range...

READ MORE

Wind Information Requirements for NextGen Applications - Phase 3 Final Report(3.98 MB)

Published in:
Project Report ATC-422, MIT Lincoln Laboratory

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in this report summarizes the activities conducted in FY14, which builds upon prior work.
READ LESS

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in...

READ MORE

Wind Information Requirements for NextGen Applications - Phase 2 Final Report(7.63 MB)

Published in:
Project Report ATC-418, MIT Lincoln Laboratory

Summary

Accurate wind information is of fundamental importance to some of the critical future air traffic concepts envisioned under the FAA’s Next Generation Air Transportation System (NextGen) initiative. In the first phase of this work, a Wind Information Analysis Framework was developed to help explore the relationship of wind information to NextGen application performance. A refined version of the framework has been developed for the Phase 2 work.
READ LESS

Summary

Accurate wind information is of fundamental importance to some of the critical future air traffic concepts envisioned under the FAA’s Next Generation Air Transportation System (NextGen) initiative. In the first phase of this work, a Wind Information Analysis Framework was developed to help explore the relationship of wind information to...

READ MORE

Airport surface traffic management decision support - perspectives based on tower flight data manager prototype

Summary

This report describes accomplishments and insights gathered during the development of decision support tools as part of the Terminal Flight Data Manager (TFDM) program. This work was performed by MIT Lincoln Laboratory and sponsored by the Federal Aviation Administration (FAA). The TFDM program integrated flight data, aircraft surveillance, information on weather and traffic flow constraints, and other data required to optimize airport configuration and arrival/departure management functions. The prototype has been evaluated in both human-in-the-loop simulations, and during operational tests at Dallas/Fort Worth (DFW) International Airport. In parallel, the Laboratory estimated future national operational benefits for TFDM decision support functions, using analysis and performance data gathered from major airports in the US. This analysis indicated that the greatest potential operational benefits would come from decision support tools that facilitate: i) managing runway queues and sequences, ii) tactical management of flight routes and times, impacted by weather and traffic constraints, and iii) managing airport configuration changes. Evaluation of TFDM prototype decision support functions in each of these areas provided valuable insights relative to the maturity of current capabilities and research needed to close performance gaps.
READ LESS

Summary

This report describes accomplishments and insights gathered during the development of decision support tools as part of the Terminal Flight Data Manager (TFDM) program. This work was performed by MIT Lincoln Laboratory and sponsored by the Federal Aviation Administration (FAA). The TFDM program integrated flight data, aircraft surveillance, information on...

READ MORE