Publications

Refine Results

(Filters Applied) Clear All

The orthogonal-transfer array: a new CCD architecture for astronomy

Published in:
SPIE Vol. 5499, Optical and Infrared Detectors for Astronomy, 21 June 2004, pp. 185-192.

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied independently to each OTCCD across the focal plane. The first design of this device has been carried out at MIT Lincoln Laboratory in support of the Pan-STARRS program with a collaborative parallel effort at Semiconductor Technology Associates (STA) for the WIYN Observatory. The two versions of this device are functionally compatible and share a common pinout and package. The first wafer lots are complete at Lincoln and at Dalsa and are undergoing wafer probing.
READ LESS

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied...

READ MORE

Broadband (200-1000 nm) back-illuminated ccd imagers

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the optical point-spread response show the devices to be fully depleted with good response across a broad spectrum, but interesting features appear in the near-IR as a result of deeply penetrating light being scattered off the surface structure of the CCD.
READ LESS

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the...

READ MORE

Showing Results

1-2 of 2