Publications

Refine Results

(Filters Applied) Clear All

Mode S Beacon System: Functional Description (Revision C)

Published in:
MIT Lincoln Laboratory Report ATC-42,C

Summary

This document provides a functional description of the Mode S Beacon Systme, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current ATC beacon system, and may be implemented at low user cost over an extended transition period. Mode S will provide the surveillance and communication performance required by the ATC automation, the reliable communications needed to support data link services, and the capability of operating with a terminal or enroute, radar digitizer-equipped, ATC surveillance radar. The material contained in this document updates and expands the information presented in "Mode S Beacon System: Functional Description", DOT/FAA/RD-82/52, 27 October 1982.
READ LESS

Summary

This document provides a functional description of the Mode S Beacon Systme, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current...

READ MORE

Traffic Alert and Collision Avoidance System (TCAS): a functional overview of minimum TCAS II

Published in:
MIT Lincoln Laboratory Report ATC-119

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is a beanon-based airborne collision avoidance system that is able to operate in all airspace without reliance on ground equipment. The TCAS concept encompasses a range of capabilities that include TCAS I, a low-cost, limited-perofrmance version, and TCAS II, which is intended to provide a comprehensive level of separation assurance in all current and predicted airspace environments through the end of this century. This document provides a functional overview of the TCAS II including operating features, a description of the avionics package, and examples of surveillance data obtained with experimental TCAS equipment.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is a beanon-based airborne collision avoidance system that is able to operate in all airspace without reliance on ground equipment. The TCAS concept encompasses a range of capabilities that include TCAS I, a low-cost, limited-perofrmance version, and TCAS II, which is intended...

READ MORE

Traffic Alert and Collision Avoidance System (TCAS): a functional overview of active TCAS I

Published in:
MIT Lincoln Laboratory Report ATC-118

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is a beacon-based airborne collision avoidance system that is able to operate in all airspace without reliance on ground equipment. The TCAS concept encompasses a range of capabilities that include TCAS I, a low-cost, limited-performance version, and TCAS II, which is intended to provide a comprehensive level of separation assurance in all current and predicted airspace enviornments through the end of this century. This document provides a functional overview of a TCAS I equipped with a low power active transponder detector. It includes a definition of TCAS I functions, calculated and measured surveillance performance for a low power interrogator and an implementation approach that incorporates the TCAS I functions in a Mode S transponder.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is a beacon-based airborne collision avoidance system that is able to operate in all airspace without reliance on ground equipment. The TCAS concept encompasses a range of capabilities that include TCAS I, a low-cost, limited-performance version, and TCAS II, which is intended...

READ MORE

Generation of the mode select sensor network coverage map

Author:
Published in:
MIT Lincoln Laboratory Report ATC-98A

Summary

This paper describes the technique of desiging the network management coverage map files necessary to coordinate a network of Mode S sensors. First, the concept of the Mode S network is defined, and the functions of Network Management are briefly described, as they relate to the coverage map. Then, the rationale for the coverage map is given together with definitions of the map structure and the information required in the file. Implementation of these definitions is illustrated in terms of a specific example: a network of four Mode S sensors in the Washington, D.C. area. As configured, each of the sensors provides service to only one of four ATC facilities (three TRACONs and one ARTCC). The resulting map generation process illustrates not only the general principles but also the significant effects of the ATC control are geometry. Finally, the procedure requored for automated map generation is defined. This procedure assumes the use of an interactive computer display terminal and is applicable to any sensor network and ATC facility configuration.
READ LESS

Summary

This paper describes the technique of desiging the network management coverage map files necessary to coordinate a network of Mode S sensors. First, the concept of the Mode S network is defined, and the functions of Network Management are briefly described, as they relate to the coverage map. Then, the...

READ MORE

Mode S Beacon System: Functional Description (Revision B)

Published in:
MIT Lincoln Laboratory Report ATC-42,B

Summary

This document provides a functional description of the Mode S Beacon System, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current ATC beacon system, and may be implemented at low user cost over an extended transition period. Mode S will provide the surveillance and commucation performance required by the ATC automation, the reliable communications needed to support data link services, and the capability of operating with a terminal or enroute, radar digitizer-equipped, ATC surveillance radar. The material contained in this document updates and expands the information presented in "DABS: A System Description", FAA-RD-74-189, November 1974 and "DABS: Functional Description," FAA-RD-80-41, April 1980.
READ LESS

Summary

This document provides a functional description of the Mode S Beacon System, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current...

READ MORE

TCAS I design guidelines

Published in:
MIT Lincoln Laboratory Report ATC-114

Summary

A description of the FAA airborne Traffic Alert and Collision Avoidance System known as TCAS I introduces the main topic of the report: results of an investigation of simple techniques suitable for the passive and active detection of nearby aircraft by TCAS I. This is followed by a review of the measurement facilities and data used to evaluate the detection techniques. Techniques for identifying passively detected returns from potentially threatening aircraft, i.e., the rejection or "filtering out" of non-threat aircraft, are described and evaluated. Alternatives for time-sharing the 1090 MHz channel between the TCAS I transponder and the passive detector are described. A candidate passive detector is defined and its performance is evaluated using flight test data. Predictions of the performance of a low-power TCAS I based on active detection are made via link calculations and flight test measurements. A summary of results concludes the report.
READ LESS

Summary

A description of the FAA airborne Traffic Alert and Collision Avoidance System known as TCAS I introduces the main topic of the report: results of an investigation of simple techniques suitable for the passive and active detection of nearby aircraft by TCAS I. This is followed by a review of...

READ MORE

Mode S installation and siting criteria

Published in:
MIT Lincoln Laboratory Report ATC-99,REV.A

Summary

This paper provides information on site-associated phenomena that affect the proper operation of a Mode S sensor and therefore warrant serious consideration when siting a sensor. The Mode S related discussion is intended to be a supplement to the ATCRBS siting criteria presented in the FAA Primary/Secondary Terminal Radar Siting Handbook. The paper discusses siting criteria as they relate to the Mode S sensor antenna system, as opposed to the ATCRBS hogtrough antenna, and importantly, addresses those characteristics of the surrounding environment that are crucial to proper Mode S surveillance.
READ LESS

Summary

This paper provides information on site-associated phenomena that affect the proper operation of a Mode S sensor and therefore warrant serious consideration when siting a sensor. The Mode S related discussion is intended to be a supplement to the ATCRBS siting criteria presented in the FAA Primary/Secondary Terminal Radar Siting...

READ MORE

The AMPS computer system: design and operation

Published in:
MIT Lincoln Laboratory Report ATC-110

Summary

The Lincoln Laboratory Air Traffic Control Radar Beacon System (ATCRBS) Monopulse Processing System (AMPS) is a mobile, stand-alone, ATCRBS surveillance sensor for processing and disseminating target reports from transponder-equipped aircraft. AMPS is essentially the ATCRBS portion of the Mode Select Beacon System (Mode S), a system designed to be an evolutionary replacement for the present third generation ATCRBS. AMPS utilizes several new features introduced by the Mode S sensor concept. In particular, the use of monopulse angle estimation permits more accurate aircraft azimuth estimation with fewer replies per scan, and improved decoding (identification) performance when garble is present. This report provides a description of the details and philosophy of the AMPS computer system implementation and operation. In particular, specific and detailed descriptions of the interrelations between AMPS's several subsystems and subtasks are provided as well as a guide on how to run them.
READ LESS

Summary

The Lincoln Laboratory Air Traffic Control Radar Beacon System (ATCRBS) Monopulse Processing System (AMPS) is a mobile, stand-alone, ATCRBS surveillance sensor for processing and disseminating target reports from transponder-equipped aircraft. AMPS is essentially the ATCRBS portion of the Mode Select Beacon System (Mode S), a system designed to be an...

READ MORE

En route weather data extraction from ATC radar systems

Author:
Published in:
MIT Lincoln Laboratory Report ATC-113
Topic:

Summary

This report describes the results of phase I of the En Route Radar Weather Program. The objective of this effort was to develop techniques for generating accurate en route weather reflectivity estimates in the presence of ground clutter. A candidate weather data extraction processor is proposed for use with either the ASR-MTD or ARSR-MTD radar systems. Principal features of the candidate processor include: (1) an antenna port (to permit use of an appropriate polarization), front end (with R^-2 STC) and quadrature video sampling subsystem which are separate from that used for aircraft surveillance. (2) use of a ground clutter map to select the form of clutter rejection to be used in each individual range-azimuth cell to estimate various weather reflectivity levels, and (3) spatial /temporal smoothing of the cell reflectivity estimates. The key elements of the suggested signal processing techniques were evaluated using data from MTD tests in Bedford, VA, Burlington, VT, and Atlantic City, NJ; however, the full system has not as yet received design validation/refinement and operational evaluation by ATC controllers. In particular, methods for identifying second trip weather echos should be addressed in the full system validation program.
READ LESS

Summary

This report describes the results of phase I of the En Route Radar Weather Program. The objective of this effort was to develop techniques for generating accurate en route weather reflectivity estimates in the presence of ground clutter. A candidate weather data extraction processor is proposed for use with either...

READ MORE

Air-to-air mode S surveillance algorithms

Published in:
MIT Lincoln Laboratory Report ATC-111

Summary

Lincoln Laboratory is assisting the Federal Aviation Administration in developing a beacon-based airborne collision avoidance system known as the Traffic Alert and Collision Avoidance System (TCAS). The version of TCAS intended for air carrier use is called TCAS II. It provides traffic and resolution advisories and operates in the highest traffic densities predicted for the end of the century. TCAS II extends and replaces an earlier system known as BCAS (for Beacon Collision Avoidance System). Mode S surveillance algorithms form the basis for TCAS algorithms now under development at Lincoln Laboratory.
READ LESS

Summary

Lincoln Laboratory is assisting the Federal Aviation Administration in developing a beacon-based airborne collision avoidance system known as the Traffic Alert and Collision Avoidance System (TCAS). The version of TCAS intended for air carrier use is called TCAS II. It provides traffic and resolution advisories and operates in the highest...

READ MORE