Publications

Refine Results

(Filters Applied) Clear All

ASR-9 Weather System Processor (WSP): wind shear algorithms performance assessment

Published in:
MIT Lincoln Laboratory Report ATC-247

Summary

Lincoln Laboratory has developed a prototype Airport Surveillance Radar Weather Systems Processor (ASR-WSP) that has been used for field measurements and operational demonstrations since 1987. Measurements acquired with this prototype provide an extensive data base for development and validation of the algorithms the WSP uses to generate operational wind shear information for Air Traffic Controllers. This report addresses the performance of the current versions of the WSP's microburst and gust front wind shear detection algorithms on available data from each of the WSP's operational sites. Evaluation of the associated environmental characteristics (e.g., storm structure, radar ground clutter environment) allows for generalization of results of the other major U.S. climatic regimes where the production version of WSP will be deployed.
READ LESS

Summary

Lincoln Laboratory has developed a prototype Airport Surveillance Radar Weather Systems Processor (ASR-WSP) that has been used for field measurements and operational demonstrations since 1987. Measurements acquired with this prototype provide an extensive data base for development and validation of the algorithms the WSP uses to generate operational wind shear...

READ MORE

Beacon radar and TCAS interrogation rates: airborne measurements in the 1030 MHz band

Published in:
MIT Lincoln Laboratory Report ATC-239

Summary

Airborne measurements were made of the rates of beacon-radar interrogations and suppressions in the 1030 MHz band. These measurements were undertaken in order to provide a basis for interference analysis of the proposed system of GPS-Squitter. The measurements were made during a flight along the East Coast, including New York, Philadelphia, Baltimore, and Washington. Measurements were also made at Atlanta and in the Dallas Fort Worth area. Results were given in a form that shows the rates of interrogations and suppressions as a function of time and location of the aircraft. Interrogations are also separated into those that were transmitted by ground-based interrogators and those that were transmitted by airborne TCAS equipment. Mode S interrogations were also separated from other modes. The number of TCAS aircraft in the vicinity was also measured during the flights. The results indicate that the rates of interrogations and suppressions were consistent in most respects from location to location. The rates Mode A and C interrogations from the ground were consistently less than 100 per second with two brief exceptions. Previous measurements had indicated a trend of decreasing interrogation rates with time since the early 1970's. The new measurements support this observation and indicate that the trend has continued.
READ LESS

Summary

Airborne measurements were made of the rates of beacon-radar interrogations and suppressions in the 1030 MHz band. These measurements were undertaken in order to provide a basis for interference analysis of the proposed system of GPS-Squitter. The measurements were made during a flight along the East Coast, including New York...

READ MORE

Anomalous propagation ground clutter suppression with the Airport Surveillance Radar (ASR) Weather Systems Processor (WSP)

Published in:
MIT Lincoln Laboratory Report ATC-244

Summary

Ground-clutter breakthrough caused by anomalous propagation (AP)--ducting of the radar beam when passing through significant atmospheric temperature and/or moisture gradients--is a significant issue for air traffic controllers who use Airport Surveillance Radar (ASR) weather channel data to guide aircraft through the airport terminal area. At present, these data are often contaminated with AP, leaving the controller unsure about the validity of information on storm location and intensity. The Weather System Processor (WSP), which is scheduled for deployment at 33 airports in the U.S., includes an AP-Editing algorithm designed to remove AP based on its Doppler-spectrum characteristics in ASR-9 data. This report provides a description of the algorithm currently used in the FAA/Lincoln Laboratory WSP prototype and a measurement of the performance of the algorithm during nine episodes of AP and/or true weather in Orlando, florida in 1991 and 1992.
READ LESS

Summary

Ground-clutter breakthrough caused by anomalous propagation (AP)--ducting of the radar beam when passing through significant atmospheric temperature and/or moisture gradients--is a significant issue for air traffic controllers who use Airport Surveillance Radar (ASR) weather channel data to guide aircraft through the airport terminal area. At present, these data are often...

READ MORE

Comparative analysis of ground-based wind shear detection radars

Published in:
Proc. IEEE 1995 Int. Radar Conf., 8-11 May 1995, pp. 486-495.

Summary

The UNISYS Corporation has developed a microburst prediction radar (MBPR) to provide detection and short-term predictions of the most hazardous form of low altitude wind shear in the vicinity of an airport. The MBPR is intended for deployment on- or near-airport so as to minimize range coverage (and associated radar power-aperture) requirements. Like the airport surveillance radar wind shear processor (ASR-WSP), the cost of the MBPR is significantly less than that of the terminal Doppler weather radar (TDWR) so that its deployment at smaller airports might be economically justified if the performance is operationally acceptable. Field tests of engineering prototypes of the MBPR have been conducted in conjunction with FAA-sponsored TDWR and WSP demonstration programs. We assess the capabilities and limitations of each of these systems using a consistent methodology that emphasizes the comparative analysis of the significant parameters of each radar in relation to wind shear phenomenology. An extensive database on wind shear event radar cross section, spatial structure and intensity distribution-derived through our FAA-sponsored testing of TDWR and ASR-WSP prototypes is an important asset in developing this comparison.
READ LESS

Summary

The UNISYS Corporation has developed a microburst prediction radar (MBPR) to provide detection and short-term predictions of the most hazardous form of low altitude wind shear in the vicinity of an airport. The MBPR is intended for deployment on- or near-airport so as to minimize range coverage (and associated radar...

READ MORE

An algorithm to remove anomalous propagation clutter returns from ASR-9 weather channel data using pencil beam radar data

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 366-371.

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide products to Air Traffic personnel that are immediately usable without further meteorological interpretation. These products include current terminal-area weather and short-term (0-30 minute) predictions of significant weather phenomena. The ASR (Airport Surveillance Radar)-9 radar is used in the terminal area to control aircraft. This radar has a weather channel that provides the location and intensity of precipitation (6-level) on the air traffic controllers' radar screen. Controllers use the weather information to aid aircraft in avoiding weather. The ASR-9 radar data are often contaminated by anomalous propagation (AP). Due to the smoothing process used in the ASR-9, controllers are unable to distinguish between AP and valid weather returns. As a result controllers may attempt to vector aircraft around AP, resulting in increased controller workload and decreased terminal airspace capacity. The ITWS product suite includes two precipitation products: ITWS Precipitation (AP removed) and the ASR-9 Precipitation (AP flagged in black). The basis for these products is the ASR-9 weather channel output. Both of these products are created by an algorithm called AP-edit. The ITWS precipitation product is a representation of the location and intensity of precipitation in the TRACON (Terminal Radar Approach Control) area and may be used for situational awareness and as a planning aid for air traffic managers by showing where weather is located relative to traffic flow patterns. The ASR-9 precipitation product explicitly shows where AP clutter is located relative to any ASR-9 radar. Since the ITWS precipitation product docs not replace the ASR-9 weather display on any controllers' displays, the Air Traffic Control (ATC) supervisor or traffic manager may use the ASR-9 precipitation product to indicate the location of AP clutter to any individual controller. The products were demonstrated during the ITWS Demonstration and Validation Operational Test and Evaluation (OT&E) conducted at Memphis and Orlando International Airports during the summer of 1994. This paper describes the AP-edit algorithm and provides a preliminary evaluation of the performance of the algorithm.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as...

READ MORE

Safety analysis of the Traffic Information Service

Published in:
MIT Lincoln Laboratory Report ATC-226

Summary

Traffic Information Service (TIS) is a Mode S data link application being developed for use by general aviation (GA) pilots. Its purpose is to provide a low-cost means of assisting the pilot in visual acquisition of nearby aircraft. The service provides two functions: traffic alerting and threat assessment. These functions are also performed by the Traffic Alert and Collision Avoidance System (TCAS). The purpose of this report is to evaluate the effectiveness and safety of TIS in relation to that of TCAS I. The analysis begins with a conceptual review of Andrews' statistical model of visual acquisition. Next, the surveillance systems and threat-detection logic of TIS and TCAS I are reviewed. Results of a Monte Carlo simulation that modeled the threat-assessment performance of TCAS I and TIS are also presented. The analysis supports the conclusion that, because of the high degree of similarity between TIS and TCAS I, TIS is a safe and effective means of assisting the pilot in visual acquisition of air traffic.
READ LESS

Summary

Traffic Information Service (TIS) is a Mode S data link application being developed for use by general aviation (GA) pilots. Its purpose is to provide a low-cost means of assisting the pilot in visual acquisition of nearby aircraft. The service provides two functions: traffic alerting and threat assessment. These functions...

READ MORE

TDWR scan strategy implementation

Author:
Published in:
MIT Lincoln Laboratory Report ATC-222

Summary

The Terminal Doppler Weather Radars (TDWRs) installed at major airports around the country are intended to enhance the safety of air travel by the detection and timely warning of hazardous wind shear conditions in the airport terminal area. To meet these objectives, scan strategies to efficiently cover the protected airspace were developed after extensive testing at several sites with different meteorological environments. Since the topology and geometry differ at each TDWR location, special considerations were necessary to define the specific scan sequences for each site. This report describes the criteria used to establish these scan sequences, including the determination of the lowest practicable elevation angle for each site - the "surface scan," which is used to detect microburst surface outflows, and other special scans such as the "MTS scan," which is used to illuminate the remote Moving Target Simulator (MTS).
READ LESS

Summary

The Terminal Doppler Weather Radars (TDWRs) installed at major airports around the country are intended to enhance the safety of air travel by the detection and timely warning of hazardous wind shear conditions in the airport terminal area. To meet these objectives, scan strategies to efficiently cover the protected airspace...

READ MORE

Assessment of the weather detection capability of an Airport Surveillance Radar with solid-state transmitter

Author:
Published in:
MIT Lincoln Laboratory Report ATC-209

Summary

The Federal Aviation Administration may acquire a new Airport Surveillance Radar-ASR-11-to replace aging ASR-7s and ASR-8s with a digital terminal radar consistent with Advanced Automation System requirements. A survey of the radar manufacturing industry suggests that a solid-state transmitter will likely be a component of this radar. The ASR-11 will feature a digital weather processing channel to measure and display six calibrated levels of precipitation reflectivity. An additional weather surveillance goal is the capability to support detection of low altitude wind shear phenomena. Use of a low peak power, solid-state transmitter and associated pulse compression technology raises several issues with respect to the capability of ASR-11 to meet these weather measurement objectives: 1. ASR-11 sensitivity will be degraded by approximately 16 to 20 dB relative to the Klystron-based ASR-9 at short range. This results because it is not feasible to use pulse compression waveforms to compensate for low peak transmitter power at short range; 2. Stability of a solid state ASR-11 transmitter may significantly exceed that of previous vacuum tube ASR transmitters. Increased clutter suppression capability associated with this enhanced stability could partially offset the reduced sensitivity of ASR-11 in meeting weather detection goals; 3. Pulse compression range sidelobes may resilt in "ghost" images of actual weather features, displaced in range by as much as 10 km. In some circumstances, these could result in false indications of operationally significant weather features such as thunderstorm-induced gust fronts. We examine these issues through straightforward analyses and simulation. Our assessment depends heavily on Doppler weather radar measurements of thunderstorms and associated wind shear phenomena obtained with Lincoln Laboratory's Terminal Doppler Weather Radar and ASR-9 testbeds. Overall, our assessment indicates that a solid-state transmitter ASR-11 can provide six-level weather reflectivity data with accuracy comparable to that of the ASR-9. Detection of low altitude wind shear phenomena using a solid-state transmitter ASR is more problematic. Reduced sensitivity at short range--the range interval of primary operational concern for an on-airport ASR--results in significant degradation of its capability to measure the reflectivity and Doppler velocity signatures associated with gust fronts and "dry" microbursts. This degradation is not offset by the enhanced clutter suppression capability provided by a solid-state transmitter. Although pulse compression range sidelobes do not appear to be a major issue if they are held to the -55 dB level, simulations are presented where range sidelobes result in a false gust front wind shear signature.
READ LESS

Summary

The Federal Aviation Administration may acquire a new Airport Surveillance Radar-ASR-11-to replace aging ASR-7s and ASR-8s with a digital terminal radar consistent with Advanced Automation System requirements. A survey of the radar manufacturing industry suggests that a solid-state transmitter will likely be a component of this radar. The ASR-11 will...

READ MORE

Analysis of surveillance performance at Chicago O'Hare Airport

Published in:
MIT Lincoln Laboratory Report ATC-193
Topic:

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting the surveillance performance of the Chicago Secondary Surveillance Radar (SSR). The Airborne Meauserements Facility (AMF), developed at Lincoln Laboratory, was used to gather TCAS and SSR interrogation and reply data in the vicinity of O'Hare Airport during periods of active TCAS operation. Simultaneously, local aircraft track data were collected using the Automated Radar Terminal System (ARTS) data recording facility. Analysis of both the AMF data and the ARTS data show that TCAS interrogations do not cause significant degradation in SSR surveillance performance and that the average Chicago ARTS track performance in the presence of TCAS-equipped aircraft is comparable to earlier measurements of track performance in Chicago as well as at a number of other high-density terminal areas. Specific regions within the CHicago surveillance area were observed to contain concentrations of poor ARTS track performance, and analysis of the data has shown the cause to be differential vertical lobing associated with the SSR antenna and faulty Mode S transponders on certain aircarrier aircraft. Both of these problems have subsequently been corrected.
READ LESS

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting...

READ MORE

Machine Intelligent Gust Front Algorithm

Published in:
MIT Lincoln Laboratory Report ATC-196

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar enhanced with a Wind Shear Processor (ASR-9 WSP). Although gust fronts are observable with fairly reliable signatures in TDWR data, existing gust front detection algorithms have achieved only modest levels of detection performance. For smaller airports not slated to receive a dedicated TDWR, the ASR-9 WSP will provide a less expensive wind shear detection capability. Gust front detection in ASR-9 SP data is an even more difficult problem, given the reduced sensitivity and less reliable Doppler measurements of this radar. A Machine Intelligent Gust Front Algorithm (MIGFA) has been constructed at Lincoln Laboratory that is a radical departure from previous design strategies. Incorporating knowledge-based, signal-processing techniques initially developed at Lincoln Laboratory for automatic target recognition, MIGFA uses meterological knowledge, spatial and temporal context, conditional data fusion, delayed thresholding, and pixel-level fusion of evidence to improve gust front detection performance significantly. In tests comparing MIGFA with an existing state-of-the-art algorithm applied to ASR-9 WSP data, MIGFA has substantially outperformed the older algorithm. In fact, by some measures, MIGFA has done as well or better than human interpreters of the same data. Operational testing of this version was done during 1992 in Orlando, Florida. The desing, test results, and performance evaluation of hte ASR-9 WSP version of MIGFA are presented in this report, which was prepared as part of the documentation package for the ASR-9 WSP gust front algorithm.
READ LESS

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar...

READ MORE