Publications

Refine Results

(Filters Applied) Clear All

MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: impact of growth and material quality on laser performance

Summary

The quality of epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL performance, and establishing correlations between epitaxial growth and materials properties is of critical importance for continuing improvements. We present an overview of the growth challenges of these complex QCL structures; describe the metalorganic vapor phase epitaxy growth of AlInAs/GaInAs/InP QCL materials; discuss materials properties that impact QCL performance; and investigate various QCL structure modifications and their effects on QCL performance. We demonstrate uncoated buried-heterostructure 9.3-um QCLs with 1.32-W continuous-wave output power and maximum wall plug efficiency (WPE) of 6.8%. This WPE is more than 50% greater than previously reported WPEs for unstrained QCLs emitting at 8.9 um and only 30% below strained QCLs emitting around 9.2 um.
READ LESS

Summary

The quality of epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL performance, and establishing correlations between epitaxial growth and materials properties is of critical importance for continuing improvements. We present an overview of the growth challenges of these complex QCL structures; describe the metalorganic vapor...

READ MORE

Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.
READ LESS

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.

READ MORE

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE

Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

Published in:
SPIE, Vol. 9492, Advanced Photon Counting Techniques IX, 28 May 2015.

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device?s space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.
READ LESS

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

High-power, low-noise 1.5-um slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications

Summary

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain medium include large transverse optical mode dimensions (>;5 × 5 μm), ultralow optical confinement factor (Γ ~ 0.25-1%), and small internal loss coefficient (α i ~ 0.5 cm-1). These properties have enabled the realization of 1) packaged Watt-class semiconductor optical amplifiers (SOAs) having low-noise figure (4-5 dB), 2) monolithic passively mode-locked lasers generating 0.25-W average output power, 3) external-cavity fiber-ring actively mode-locked lasers exhibiting residual timing jitter of
READ LESS

Summary

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain...

READ MORE

Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished 150-mm-diameter InP wafer was then directly bonded to the SOI wafer and interconnected to the Si readout circuits by 3D vias. A 1024 x 1024 diode array with 8-um pixel size is demonstrated. This work shows the wafer-scale 3D integration of a compound semiconductor with Si.
READ LESS

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...

READ MORE

InP-based single-photon detector arrays with asynchronous readout integrated circuits

Summary

We have developed and demonstrated a highduty- cycle asynchronous InGaAsP-based photon counting detector system with near-ideal Poisson response, roomtemperature operation, and nanosecond timing resolution for near-infrared applications. The detector is based on an array of Geiger-mode avalanche photodiodes coupled to a custom integrated circuit that provides for lossless readout via an asynchronous, nongated architecture. We present results showing Poisson response for incident photon flux rates up to 10 million photons per second and multiple photons per 3-ns timing bin.
READ LESS

Summary

We have developed and demonstrated a highduty- cycle asynchronous InGaAsP-based photon counting detector system with near-ideal Poisson response, roomtemperature operation, and nanosecond timing resolution for near-infrared applications. The detector is based on an array of Geiger-mode avalanche photodiodes coupled to a custom integrated circuit that provides for lossless readout via...

READ MORE

Reliable large format arrays of Geiger-mode avalanche photodiodes

Published in:
IPRM 2008, 20th Int. Conf. on Indium Phosphide and Related Materials, 25-29 May 2008.
Topic:

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
READ LESS

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.

READ MORE

Organometallic vapor phase epitaxy of relaxed InPAs/InP as multiplication layers for avalanche photodiodes

Published in:
J. Cryst. Growth, Vol. 310, No. 7-9, April 2008, pp. 1583-1589 (Proc. 13th Int. Conf. on Crystal Growth, in conjunction with Int. Conf. on Vapor Growth and Epitaxy and US Biennial Workshop on Organometallic Vapor Phase Epitaxy, 12-17 August 2007).
Topic:

Summary

InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2 [1 1 0] by organometallic vapor phase epitaxy at a growth temperature of 580 1C. The growth scheme used for the InP1-yAsy buffer layer was optimized based on surface step structure and X-ray diffraction. It was found that step-flow growth is a minimum criterion for obtaining good material quality. A narrower XRD full-width at half-maximum values were measured for 21-miscut substrates compared to 0.21-miscut substrates. A highquality buffer was obtained by step-grading the InP1-yAsy composition in increments of y = 0.05 over a layer thickness of 0.5 mm to a final y = 0.25. The device performance of LMM GM APDs was compared to that of measured more traditional lattice-matched GaSbbased devices. At 77 K, dark count rates of LMM devices are ~50 kHz at 5V overbias, and are comparable to GaSb-based p-i-n diodes operated in Geiger mode, while reset times of 0.02 ms are approximately 3 orders of magnitude lower than GaSb-based GM APDs.
READ LESS

Summary

InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2...

READ MORE

Showing Results

1-10 of 15