Publications

Refine Results

(Filters Applied) Clear All

Effects of humidity and surface on photoalignment of brilliant yellow

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate storage before coating, during the spin-coating process, between film coating and exposure, and after exposure. Surprising results are the drastic effect of humidity during the spin-coating process, the humidity annealing to increase the order of the BY layer after exposure and the dry annealing to stabilise the layer. Our results are interpreted in terms of the effect of water on the aggregation of BY. The type of surface studied had minimal effects. Thin BY films (about 3 nm thickness) were sensitive to the hydrophilicity of the surface while thick BY films (about 30 nm thickness) were not affected by changing the surface. The results of this paper allow for the optimisation of the BY photoalignment for liquid crystal display application as well as a better understanding of the BY photoalignment mechanism.
READ LESS

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate...

READ MORE

Use of Photoacoustic Excitation and Laser Vibrometry to Remotely Detect Trace Explosives

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal, with frequencies predominantly between 100 and 500 kHz, is detected remotely via a wideband laser Doppler vibrometer. This two-laser system can be used to rapidly detect and discriminate explosives from ordinary background materials, which have significantly weaker photoacoustic response. A 100  ng/cm2 limit of detection is estimated. Photoablation is proposed as the dominant mechanism for the large photoacoustic signals generated by explosives.
READ LESS

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal...

READ MORE

Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.
READ LESS

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.

READ MORE

HF vector sensor for radio astronomy: ground testing results

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution and sensitivity to be scientifically useful. Multi-spacecraft constellations scale quickly in cost and complexity as the number of spacecraft increases, so minimizing the number of required spacecraft for an interferometric array (while maintaining performance) is critical for feasibility. We present the HF (High Frequency, 3 to 30 MHz) Vector Sensor as a high performance spacecraft instrument in a future space-based interferometric array. The HF Vector Sensor is composed of three orthogonal dipoles and three orthogonal loop antennas with a common phase center. These six elements fully measure the E-M field of incoming radiation. We present the design of two prototype HF Vector Sensors, ground-based data collection at frequencies above the ionospheric cut-off, and imaging results using several different algorithms.
READ LESS

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution...

READ MORE

Liquid crystal uncooled thermal imager development

Published in:
SPIE, Vol. 9974, Infrared Sensors, Devices, and Applications VI, 28 August 2016.

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. The present work is demonstrating that the LCs have the required performance (sensitivity, dynamic range, speed, etc.) to enable a more flexible uncooled imager. Utilizing 200-mm wafers, a process has been developed and arrays have been fabricated using aligned LCs confined in 20-20-um cavities elevated on thermal legs. Detectors have been successfully fabricated on both silicon and fused silica wafers using less than 10 photolithographic mask steps. A breadboard camera system has been assembled to test the imagers. Various sensor configurations are described along with advantages and disadvantages of component arrangements.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...

READ MORE

The TESS camera: modeling and measurements with deep depletion devices

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 um thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 um silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.
READ LESS

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon...

READ MORE

Directly-deposited blocking filters for high-performance silicon x-ray detectors

Published in:
SPIE, Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, July 2016, 99054C.

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.
READ LESS

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other...

READ MORE

Resonance fluorescence from an artificial atom in squeezed vacuum

Published in:
Phys. Rev. X, Vol. 6, No. 3, July-September 2016, 031004.

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.
READ LESS

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing...

READ MORE

Multi-channel agile comb generator for antenna radiation pattern measurements

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is to combine a low-cost receiver with a flexible signal source. This paper presents the design of a tunable comb generator prototype that is capable of outputting frequencies up to 4 GHz. The compact nature of this source along with its potential to be dynamically reconfigured yields a device that can be used to measure antenna patterns for many different applications.
READ LESS

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is...

READ MORE

Single antenna in-band full-duplex isolation-improvement techniques

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.
Topic:
R&D group:

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this paper, and illustrate how RF components can be used to minimize the consequential self-interference of these systems. Two unique cancellation schemes were validated, and the isolation of a single-antenna transceiver was measured to improve by 15 and 33 dB over the 100 MHz bandwidth centered at 2.45 GHz.
READ LESS

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this...

READ MORE