Publications

Refine Results

(Filters Applied) Clear All

Data-driven evaluation of a flight re-route air traffic management decision-support tool

Published in:
Applied Human Factors and Ergonomics Conf., 21 July 2012.

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making a re-route decision, which is one solution to mitigate airspace congestion, a display integrating convective weather information with departure demand predictions was prototyped jointly by MIT Lincoln Laboratory and the MITRE Corporation. The tool was deployed to twelve air traffic facilities involved in handling New York area flights for operational evaluation during the summer of 2011. Field observations, data mining and analyses were conducted under both fair and convective weather conditions. The system performance metrics chosen to evaluate the tool's effectiveness in supporting re-route decisions include predicted wheels-off error, predicted wheels-off forecast spread, and hourly departure fix demand forecast spread. The wheels-off prediction errors were near zero for half the flights across all days, but the highest 10% errors exceeded 30 minutes on convective weather days. The wheels-off forecast spread exceeded 30 minutes for 25% of forecasts on convective weather days. The hourly departure demand forecast spread was 9 flights or less for 50% of departures across all days except one. Six out of the seven days having the highest hourly departure demand forecast spreads occurred in the presence of long-lived weather impacts.
READ LESS

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making...

READ MORE

Establishing wind information needs for four dimensional trajectory-based operations

Published in:
1st Int. Conf. on Interdisciplinary Science for Innovative Air Traffic Management, ISIATM, 26 June 2012.

Summary

Accurate wind information is of fundamental importance to the delivery of benefits from future air traffic concepts. A Wind Information Analysis Framework is described in this paper and its utility for assessing wind information needs for a four-dimensional trajectory based operations application is demonstrated.
READ LESS

Summary

Accurate wind information is of fundamental importance to the delivery of benefits from future air traffic concepts. A Wind Information Analysis Framework is described in this paper and its utility for assessing wind information needs for a four-dimensional trajectory based operations application is demonstrated.

READ MORE

Towards the detection of aircraft icing conditions using operational dual-polarimetric radar

Published in:
7th European Conf. on Radar in Meteorology and Hydrology, ERAD, 25-29 June 2012.

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The next challenge is to use the dual-polarimetric data above the melting level to distinguish regions containing super-cooled liquid water, which constitutes an aviation icing hazard, from regions of pure ice and snow. It has been well documented that the S-band dual-polarimetric radar signatures at individual range gates of super-cooled liquid water and ice crystals overlap significantly, complicating the identification of icing conditions using individual radar measurements. Recently several investigators have found that the aggregate characteristics of dual-polarimetric radar measurements over regions on the order of several kilometers show distinguishing features between regions containing super-cooled liquid and those with ice only. In this study, the features found in the literature are evaluated, extended and combined using a fuzzy-logic framework to provide an icing threat likelihood. The results of this new algorithm are computed using data collected in Colorado from the Colorado State University CHILL radar and the National Center for Atmospheric Research S-Pol radar (collectively called FRONT – The Front Range Observational Testbed) collected in the winter of 2010/2011 in coordination with the NASA Icing Remote Sensing System (NIRSS) and compared to pilot reports on approach or departure from nearby airports. The preliminary results look encouraging and will be presented. The ultimate goal is to produce an end-to-end algorithm to produce a reliable icing threat product that can then be combined with existing icing detection systems to improve their performance.
READ LESS

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The...

READ MORE

A safety driven approach to the development of an airborne sense and avoid system

Published in:
AIAA Infotech at Aerospace Conf. and Exhibit, 19-21 June 2012.

Summary

Sense and avoid is the primary technical barrier to increased unmanned aircraft system airspace access. A safety assessment driven approach to sense and avoid system design and requirements validation is being employed to ensure safety and operational suitability. The foundation of this approach is a fast-time modeling and simulation architecture originally used to support the certification of the Traffic Alert and Collision Avoidance System. This paper describes the safety assessment methodology, including the architecture and evaluation metrics, and presents preliminary results for key system architecture and design tradeoffs.
READ LESS

Summary

Sense and avoid is the primary technical barrier to increased unmanned aircraft system airspace access. A safety assessment driven approach to sense and avoid system design and requirements validation is being employed to ensure safety and operational suitability. The foundation of this approach is a fast-time modeling and simulation architecture...

READ MORE

NextGen surveillance and weather radar capability (NSWRC) siting analysis

Published in:
Project Report ATC-391, MIT Lincoln Laboratory

Summary

As the current radars that perform weather and aircraft surveillance over the United States age, they must be sustained through service life extension programs or replaced. In the latter case, the radars can be replaced by multiple types of radars with different missions or they can be replaced by scalable multifunction phased array radars (MPARs). State-of-the-art active phased array systems have the potential to provide improved capabilities such as earlier detection and better characterization of hazardous weather phenomena, 3D tracking of noncooperative aircraft, better avoidance of unwanted clutter sources such as wind farms, and more graceful performance degradation with component failure. As the U.S. aviation community works toward realizing the Next Generation Air Transportation System (NextGen), achieving improved capabilities for aircraft and weather surveillance becomes critical, because stricter observation requirements are believed to be needed. Hence, the Federal Aviation Administration (FAA) is considering the MPAR as a possible solution to their NextGen Surveillance and Weather Radar Capability (NSWRC). Cost is one hurdle to the deployment of a modern phased array radar network. One way of lowering the overall cost is to reduce the total number of radars. Because of the overlap in coverage provided by the current radar networks, a unified MPAR replacement network can potentially decrease the total number of radars needed to cover the same airspace. An earlier analysis conducted by MIT Lincoln Laboratory concluded that 510 legacy radars could be effectively replaced by 334 MPARs over the contiguous United States (CONUS). There was, however, some uncertainty whether the spatial resolution used in the terrain blockage calculations was fine enough to accurately depict radar coverage, and also if terminal area coverage was being adequately addressed. This study revisits the siting analysis using a much finer spatial resolution, expands the coverage domain to include all fifty states and U.S. territories, adds the Air Force long-range surveillance radars (FPSs) to the legacy pool, and allows scaling by number of faces per radar. The aim is to provide an estimate of the minimum number of MPARs needed to replace the existing radar coverage. We also provide an extensive statistical compilation of legacy versus MPAR coverage for various observational performance parameters.
READ LESS

Summary

As the current radars that perform weather and aircraft surveillance over the United States age, they must be sustained through service life extension programs or replaced. In the latter case, the radars can be replaced by multiple types of radars with different missions or they can be replaced by scalable...

READ MORE

Dallas/Fort Worth field demonstration #2 (DFW-2) final report for Tower Flight Data Manager (TFDM)

Summary

The Tower Flight Data Manager (TFDM) is the next generation air traffic control tower (ATCT) information system that integrates surveillance, flight data, and other sources, which enables advanced decision support tools (DSTs) to improve departure and arrival efficiency and reduce fuel burn at the airport. TFDM was exercised as a prototype installed at the Dallas / Fort Worth International Airport (DFW) during a two-week demonstration in the spring of 2011 termed DFW-2. MIT Lincoln Laboratory conducted this demonstration for the FAA in coordination with DFW air traffic control (ATC) and the DFW airport authority. The objective of this TFDM field demonstration was to validate the operational suitability and refine production system requirements of the Tower Information Display System (TIDS) surface surveillance display and Flight Data Manager (FDM) electronic flight data display and to evaluate the first iteration of the Supervisor Display and DSTs. These objectives were met during the two-week field demonstration. Results indicated that the TIDS and FDM exhibited capabilities considered operationally suitable for the tower as an advisory system and as a primary means for control given surface surveillance that is approved for operational use. Human factors data indicated that TIDS and FDM could be beneficial. The prototype Supervisor Display and DSTs met a majority of the technical performance criteria, but fewer than half of the human factors success criteria were met. As this was the first iteration of the Supervisor Display and DST capabilities, subsequent prototype iterations to achieve the target concept of operations, functionality and information presentation with accompanying field demonstrations to evaluate these honed capabilities were recommended and expected. FLM/TMC feedback will help refine subsequent system design.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) is the next generation air traffic control tower (ATCT) information system that integrates surveillance, flight data, and other sources, which enables advanced decision support tools (DSTs) to improve departure and arrival efficiency and reduce fuel burn at the airport. TFDM was exercised as a...

READ MORE

Evaluation of the Integrated Departure Route Planning (IDRP) Tool 2011 prototype

Published in:
MIT Lincoln Laboratory Report ATC-388

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype was deployed in the summer of 2010 for a very limited field evaluation. A second, more comprehensive field evaluation of the "Phase 2" IDRP prototype was performed in the summer of 2011. The key focus of IDRP is the planning and implementation of departure reroutes to avoid weather impacts and volume congestion on departure fixes and routes. This evaluation assesses three facets of the IDRP prototype critical to the successful realization of its concept of operations: 1. performance of weather impact forecasts from RAPT and departure demand forecasts from tfmCore, 2. effectiveness of reroute decisions, and 3. potential impacts on procedures and decision making based on observations of IDRP use in the field. The evaluation concludes with suggestions for future enhancements to improve the performance and realization of potential benefits in operational use of IDRP.
READ LESS

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype...

READ MORE

Next-generation airborne collision avoidance system

Published in:
Lincoln Laboratory Journal, Vol. 19, No. 1, 2012, pp. 17-33.

Summary

In response to a series of midair collisions involving commercial airliners, Lincoln Laboratory was directed by the Federal Aviation Administration in the 1970s to participate in the development of an onboard collision avoidance system. In its current manifestation, the Traffic Alert and Collision Avoidance System is mandated worldwide on all large aircraft and has significantly improved the safety of air travel, but major changes to the airspace planned over the coming years will require substantial modification to the system. Recently, Lincoln Laboratory has been pioneering the development of a new approach to collision avoidance systems that completely rethinks how such systems are engineered, allowing the system to provide a higher degree of safety without interfering with normal, safe operations.
READ LESS

Summary

In response to a series of midair collisions involving commercial airliners, Lincoln Laboratory was directed by the Federal Aviation Administration in the 1970s to participate in the development of an onboard collision avoidance system. In its current manifestation, the Traffic Alert and Collision Avoidance System is mandated worldwide on all...

READ MORE

Hazard alerting based on probabilistic models

Published in:
J. Guidance, Control, Dynamics, Vol. 35, No. 2, March-April 2012, pp. 442-450.

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a threshold. Another way to develop such a system is to model the system as a Markov decision process and solve for the hazard experiments reveal that an expected utility approach performs better than threshold-based approaches when the dynamic stochasticity is high, where accounting for delays or changes in the alert becomes more important. however, for certain system parameters and operating environments, a threshold-based approach may provide comparable performance.
READ LESS

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a...

READ MORE

U.S. Department of Transportation Federal Aviation Administration Field Demonstration #2: Final Report for Staffed NextGen Tower (SNT)

Published in:
MIT Lincoln Laboratory Report ATC-389

Summary

Staffed NextGen Towers (SNT), a research concept being developed and validated by the Federal Aviation Administration (FAA), is a paradigm shift to providing air traffic control services primarily via surface surveillance approved for operational use by controllers instead of the existing out-the-window (OTW) view at high-density airports. SNT was exercised as a prototype installed at the Dallas-Fortworth International Airport (DFW) during a two-week demonstration in the spring of 2011. MIT Lincoln Laboratory conducted this demonstration for the FAA in coordination with DFW air traffic control (ATC) and the DFW airport authority. This proof-of-concept demonstration used live traffic and was conducted by shadowing East tower operations from the DFW center tower, which is a back-up facility currently not typically used for air traffic control. The objective of this SNT field demonstration was to validate the supplemental SNT concept, to assess the operational suitability of the Tower Information Display System (TIDS) display for surface surveillance, and to evaluate the first iteration of prototype cameras in providing visual augmentation. TIDS provided surface surveillance information using an updated user interface that was integrated with electronic flight data. The cameras provided both fixed and scanning views of traffic to augment the OTW view. These objectives were met during the two-week field demonstration. DFW air traffic provided twelve controllers, three front line manager (FLMs), and three traffic management coordinators (TMCs) as test subjects. The twelve National Air Traffic Controllers Association (NATCA) DFW controllers "worked" the traffic according to their own techniques, using new hardware and software that included high resolution displays of surveillance data augmented by camera views. This equipment was designed to provide enhanced situational awareness to allow controllers to manage increased traffic volume during poor visibility conditions, leading to increased throughput. Results indicated that the likelihood of user acceptance and operational suitability is high for TIDS as a primary means for control, given surface surveillance that is approved for operational use. Human factors data indicated that TIDS could be beneficial. However, major technical issues included two display freezes, some incorrectly depicted targets, and display inconsistencies on TIDS. The cameras experienced numerous technical limitations that negatively influenced the human factors assessment of them. This report includes the percentages of human factors and technical success criteria that passed at DFW-2.
READ LESS

Summary

Staffed NextGen Towers (SNT), a research concept being developed and validated by the Federal Aviation Administration (FAA), is a paradigm shift to providing air traffic control services primarily via surface surveillance approved for operational use by controllers instead of the existing out-the-window (OTW) view at high-density airports. SNT was exercised...

READ MORE