Publications

Refine Results

(Filters Applied) Clear All

Improving long-text authorship verification via model selection and data tuning

Published in:
Proc. 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, LaTeCH-CLfL2023, 5 May 2023, pp. 28-37.

Summary

Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present challenges for their practical application. In this work, we investigate the effect of these challenges in the application of a Cross-Encoder Transformer-based author verification system under multiple conditions. We perform experiments with four Transformer backbones using differently tuned variants of fanfiction data and found that our BigBird pipeline outperformed Longformer, RoBERTa, and ELECTRA and performed competitively against the official top ranked system from the PAN evaluation. We also examined the effect of authors and fandoms not seen in training on model performance. Through this, we found fandom has the greatest influence on true trials, pairs of text written by the same author, and that a balanced training dataset in terms of class and fandom performed the most consistently.
READ LESS

Summary

Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present...

READ MORE

Automated exposure notification for COVID-19

Summary

Private Automated Contact Tracing (PACT) was a collaborative team and effort formed during the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic. PACT's mission was to enhance contact tracing in pandemic response by designing exposure-detection functions in personal digital communication devices that have maximal public health utility while preserving privacy. This report explains and discusses the use of automated exposure notification during the COVID-19 pandemic and to provide some recommendations for those who may try to design and deploy similar technologies in future pandemics.
READ LESS

Summary

Private Automated Contact Tracing (PACT) was a collaborative team and effort formed during the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic. PACT's mission was to enhance contact tracing in pandemic response by designing exposure-detection functions in personal digital communication devices that have maximal public health utility while preserving privacy...

READ MORE

A generative approach to condition-aware score calibration for speaker verification

Published in:
IEEE/ACM Trans. Audio, Speech, Language Process., Vol. 31, 2023, pp. 891-901.

Summary

In speaker verification, score calibration is employed to transform verification scores to log-likelihood ratios (LLRs) which are statistically interpretable. Conventional calibration techniques apply a global score transform. However, in condition-aware (CA) calibration, information conveying signal conditions is provided as input, allowing calibration to be adaptive. This paper explores a generative approach to condition-aware score calibration. It proposes a novel generative model for speaker verification trials, each which includes a trial score, a trial label, and the associated pair of speaker embeddings. Trials are assumed to be drawn from a discrete set of underlying signal conditions which are modeled as latent Categorical random variables, so that trial scores and speaker embeddings are drawn from condition-dependent distributions. An Expectation-Maximization (EM) Algorithm for parameter estimation of the proposed model is presented, which does not require condition labels and instead discovers relevant conditions in an unsupervised manner. The generative condition-aware (GCA) calibration transform is then derived as the log-likelihood ratio of a verification score given the observed pair of embeddings. Experimental results show the proposed approach to provide performance improvements on a variety of speaker verification tasks, outperforming static and condition-aware baseline calibration methods. GCA calibration is observed to improve the discriminative ability of the speaker verification system, as well as provide good calibration performance across a range of operating points. The benefits of the proposed method are observed for task-dependent models where signal conditions are known, for universal models which are robust across a range of conditions, and when facing unseen signal conditions.
READ LESS

Summary

In speaker verification, score calibration is employed to transform verification scores to log-likelihood ratios (LLRs) which are statistically interpretable. Conventional calibration techniques apply a global score transform. However, in condition-aware (CA) calibration, information conveying signal conditions is provided as input, allowing calibration to be adaptive. This paper explores a generative...

READ MORE

Backdoor poisoning of encrypted traffic classifiers

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).
READ LESS

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks...

READ MORE

Advances in cross-lingual and cross-source audio-visual speaker recognition: The JHU-MIT system for NIST SRE21

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE, MIT-LL and AGH for NIST SRE21. NIST SRE21 consisted of speaker detection over multilingual conversational telephone speech (CTS) and audio from video (AfV). Besides the regular audio track, the evaluation also contains visual (face recognition) and multi-modal tracks. This evaluation exposes new challenges, including cross-source–i.e., CTS vs. AfV– and cross-language trials. Each speaker can speak two or three languages among English, Mandarin and Cantonese. For the audio track, we evaluated embeddings based on Res2Net and ECAPA-TDNN, where the former performed the best. We used PLDA based back-ends trained on previous SRE and VoxCeleb and adapted to a subset of Mandarin/Cantonese speakers. Some novel contributions of this submission are: the use of neural bandwidth extension (BWE) to reduce the mismatch between the AFV and CTS conditions; and invariant representation learning (IRL) to make the embeddings from a given speaker invariant to language. Res2Net with neural BWE was the best monolithic system. We used a pre-trained RetinaFace face detector and ArcFace embeddings for the visual track, following our NIST SRE19 work. We also included a new system using a deep pyramid single shot face detector and face embeddings trained on Crystal loss and probabilistic triplet loss, which performed the best. The number of face embeddings in the test video was reduced by agglomerative clustering or weighting the embedding based on the face detection confidence. Cosine scoring was used to compare embeddings. For the multi-modal track, we just added the calibrated likelihood ratios of the audio and visual conditions, assuming independence between modalities. The multi-modal fusion improved Cprimary by 72% w.r.t. audio.
READ LESS

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE, MIT-LL and AGH for NIST SRE21. NIST SRE21 consisted of speaker detection over multilingual conversational telephone speech (CTS) and audio from video (AfV). Besides the regular audio track, the evaluation also contains visual (face recognition) and multi-modal tracks. This...

READ MORE

Advances in speaker recognition for multilingual conversational telephone speech: the JHU-MIT system for NIST SRE20 CTS challenge

Published in:
Speaker and Language Recognition Workshop, Odyssey 2022, pp. 338-345.

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures based on ResNet, squeeze-excitation ResNets, Transformers and EfficientNets. Though squeeze-excitation ResNets and EfficientNets provide superior performance in in-domain tasks like VoxCeleb, regular ResNet34 was more robust in the challenge scenario. On the contrary, squeeze-excitation networks over-fitted to the training data, mostly in English. We also proposed a novel PLDA mixture and k-NN PLDA back-ends to handle the multilingual trials. The former clusters the x-vector space expecting that each cluster will correspond to a language family. The latter trains a PLDA model adapted to each enrollment speaker using the nearest speakers–i.e., those with similar language/channel. The k-NN back-end improved Act. Cprimary (Cp) by 68% in SRE16-19 and 22% in SRE20 Progress w.r.t. a single adapted PLDA back-end. Our best single system achieved Act. Cp=0.110 in SRE20 progress. Meanwhile, our best fusion obtained Act. Cp=0.110 in the progress–8% better than single– and Cp=0.087 in the eval set.
READ LESS

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures...

READ MORE

Toward improving EN adoption: Bridging the gap between stated intention and actual use

Summary

As the COVID-19 pandemic swept the globe in the spring of 2020, technologists looked to enlist technology to assist public health authorities (PHAs) and help stem the tide of infections. As part of this technology push, experts in health care, cryptography, and other related fields developed the Private Automated Contact Tracing (PACT) protocol and related projects to assist the public health objective of slowing the spread of SARS-CoV-2 through digital contact tracing. The joint Google and Apple deployed protocol (Google-Apple Exposure Notifications, also known as GAEN or EN), which became the de facto standard in the U.S., employs the same features as detailed by PACT. The protocol leverages smartphone Bluetooth communications to alert users of potential contact with those carrying the COVID-19 virus in a way that preserves the privacy of both the known-infected individual, and the users receiving the alert. Contact tracing and subsequent personal precautions are more effective at reducing disease spread when more of the population participates, but there are known difficulties with the adoption of novel technology. In order to help the U.S. Centers for Disease Control and Prevention (CDC) and U.S. state-level public health teams address these difficulties, a team of staff from MIT's Lincoln Laboratory (MIT LL) and Computer Science and Artificial Intelligence Laboratory (MIT CSAIL) focused on studying user perception and information needs.
READ LESS

Summary

As the COVID-19 pandemic swept the globe in the spring of 2020, technologists looked to enlist technology to assist public health authorities (PHAs) and help stem the tide of infections. As part of this technology push, experts in health care, cryptography, and other related fields developed the Private Automated Contact...

READ MORE

Cross-language attacks

Published in:
Network and Distributed System Security (NDSS) Symposium 2022.

Summary

Memory corruption attacks against unsafe programming languages like C/C++ have been a major threat to computer systems for multiple decades. Various sanitizers and runtime exploit mitigation techniques have been shown to only provide partial protection at best. Recently developed ‘safe’ programming languages such as Rust and Go hold the promise to change this paradigm by preventing memory corruption bugs using a strong type system and proper compile-time and runtime checks. Gradual deployment of these languages has been touted as a way of improving the security of existing applications before entire applications can be developed in safe languages. This is notable in popular applications such as Firefox and Tor. In this paper, we systematically analyze the security of multi-language applications. We show that because language safety checks in safe languages and exploit mitigation techniques applied to unsafe languages (e.g., Control-Flow Integrity) break different stages of an exploit to prevent control hijacking attacks, an attacker can carefully maneuver between the languages to mount a successful attack. In essence, we illustrate that the incompatible set of assumptions made in various languages enables attacks that are not possible in each language alone. We study different variants of these attacks and analyze Firefox to illustrate the feasibility and extent of this problem. Our findings show that gradual deployment of safe programming languages, if not done with extreme care, can indeed be detrimental to security.
READ LESS

Summary

Memory corruption attacks against unsafe programming languages like C/C++ have been a major threat to computer systems for multiple decades. Various sanitizers and runtime exploit mitigation techniques have been shown to only provide partial protection at best. Recently developed ‘safe’ programming languages such as Rust and Go hold the promise...

READ MORE

Preventing Kernel Hacks with HAKCs

Published in:
Network and Distributed System Security (NDSS) Symposium 2022.

Summary

Commodity operating system kernels remain monolithic for practical and historical reasons. All kernel code shares a single address space, executes with elevated processor privileges, and has largely unhindered access to all data, including data irrelevant to the completion of a specific task. Applying the principle of least privilege, which limits available resources only to those needed to perform a particular task, to compartmentalize the kernel would realize major security gains, similar to microkernels yet without the major redesign effort. Here, we introduce a compartmentalization design, called a Hardware-Assisted Kernel Compartmentalization (HAKC), that approximates least privilege separation, while minimizing both developer effort and performance overhead. HAKC divides code and data into separate partitions, and specifies an access policy for each partition. Data is owned by a single partition, and a partition’s access-control policy is enforced at runtime, preventing unauthorized data access. When a partition needs to transfer control flow to outside itself, data ownership is transferred to the target, and transferred back upon return. The HAKC design allows for isolating code and data from the rest of the kernel, without utilizing any additional Trusted Computing Base while compartmentalized code is executing. Instead, HAKC relies on hardware for enforcement. Loadable kernel modules (LKMs), which dynamically load kernel code and data providing specialized functionality, are the single largest part of the Linux source base. Unfortunately, their collective size and complexity makes LKMs the cause of the majority of CVEs issued for the Linux kernel. The combination of a large attack surface in kernel modules, and the monolithic design of the Linux kernel, make LKMs ideal candidates for compartmentalization. To demonstrate the effectiveness of our approach, we implement HAKC in Linux v5.10 using extensions to the Arm v8.5-A ISA, and compartmentalize the ipv6.ko LKM, which consists of over 55k LOC. The average overhead measured in Apachebench tests was just 1.6%–24%. Additionally, we compartmentalize the nf_tables.ko packet filtering LKM, and measure the combined impact of using both LKMs. We find a reasonable linear growth in overhead when both compartmentalized LKMs are used. Finally, we measure no significant difference in performance when using the compartmentalized ipv6.ko LKM over the unmodified LKM during real-world web browsing experiments on the Alexa Top 50 websites.
READ LESS

Summary

Commodity operating system kernels remain monolithic for practical and historical reasons. All kernel code shares a single address space, executes with elevated processor privileges, and has largely unhindered access to all data, including data irrelevant to the completion of a specific task. Applying the principle of least privilege, which limits...

READ MORE

Quantifying bias in face verification system

Summary

Machine learning models perform face verification (FV) for a variety of highly consequential applications, such as biometric authentication, face identification, and surveillance. Many state-of-the-art FV systems suffer from unequal performance across demographic groups, which is commonly overlooked by evaluation measures that do not assess population-specific performance. Deployed systems with bias may result in serious harm against individuals or groups who experience underperformance. We explore several fairness definitions and metrics, attempting to quantify bias in Google’s FaceNet model. In addition to statistical fairness metrics, we analyze clustered face embeddings produced by the FV model. We link well-clustered embeddings (well-defined, dense clusters) for a demographic group to biased model performance against that group. We present the intuition that FV systems underperform on protected demographic groups because they are less sensitive to differences between features within those groups, as evidenced by clustered embeddings. We show how this performance discrepancy results from a combination of representation and aggregation bias.
READ LESS

Summary

Machine learning models perform face verification (FV) for a variety of highly consequential applications, such as biometric authentication, face identification, and surveillance. Many state-of-the-art FV systems suffer from unequal performance across demographic groups, which is commonly overlooked by evaluation measures that do not assess population-specific performance. Deployed systems with bias...

READ MORE