Publications

Refine Results

(Filters Applied) Clear All

All silicon infrared photodiodes: photo response and effects of processing temperature

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse bias of 5 V and 1.2 A W-1 at 20 V. 3-mm-long diodes processed to 475C exhibited two states, L1 and L2, with photo responses of 0.3 +/-0.1 A W-1 at 5 V and 0.7 +/-10.2 A W-1 at 20 V for the L1 state and 0.5 +/-0.2 A W-1 at 5 V and 4 to 20 A W-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.
READ LESS

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse...

READ MORE

Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz

Published in:
Opt. Express, Vol. 15, No. 17, 20 August 2007, pp. 10998-11005.

Summary

We introduce a multiphoton microscope for high-speed three-dimensional (3D) fluorescence imaging. The system combines parallel illumination by a multifocal multiphoton microscope (MMM) with parallel detection via a segmented high-sensitivity charge-couple device (CCD) camera. The instrument consists of a Ti-sapphire laser illuminating a microlens array that projects 36 foci onto the focal plane. The foci are scanned using a resonance scanner and imaged with a custom-made CCD camera. The MMM increases the imaging speed by parallelizing the illumination; the CCD camera can operate at a frame rate of 1428 Hz while maintaining a low read noise of 11 electrons per pixel by dividing its chip into 16 independent segments for parallelized readout. We image fluorescent specimens at a frame rate of 640 Hz. The calcium wave of fluo3 labeled cardiac myocytes is measured by imaging the spontaneous contraction of the cells in a 0.625 second sequence movie, consisting of 400 single images.
READ LESS

Summary

We introduce a multiphoton microscope for high-speed three-dimensional (3D) fluorescence imaging. The system combines parallel illumination by a multifocal multiphoton microscope (MMM) with parallel detection via a segmented high-sensitivity charge-couple device (CCD) camera. The instrument consists of a Ti-sapphire laser illuminating a microlens array that projects 36 foci onto the...

READ MORE

Beam combining of ytterbium fiber amplifiers (invited)

Published in:
J. Opt. Soc. Am. B, Vol. 24, No. 8, August 2007, pp. 1707-1715.

Summary

Fiber lasers are well suited to scaling to high average power using beam-combining techniques. For coherent combining, optical phase-noise characterization of a ytterbium fiber amplifier is required to perform a critical evaluation of various approaches to coherent combining. For wavelength beam combining, we demonstrate good beam quality from the combination of three fiber amplifiers, and we discuss system scaling and design trades between laser linewidth, beam width, grating dispersion, and beam quality.
READ LESS

Summary

Fiber lasers are well suited to scaling to high average power using beam-combining techniques. For coherent combining, optical phase-noise characterization of a ytterbium fiber amplifier is required to perform a critical evaluation of various approaches to coherent combining. For wavelength beam combining, we demonstrate good beam quality from the combination...

READ MORE

Orthogonal transfer arrays for wide-field adaptive imaging

Published in:
Proc. 2007 Int. Image Sensor Workshop, 7-10 June 2007.

Summary

The orthogonal transfer array (OTA) is a novel charge-coupled device (CCD) imager based on the orthogonal-transfer CCD (OTCCD). The OTCCD, in turn, is a device capable of charge transfer in all directions and has been developed for adaptive imaging in ground-based astronomy. By using a bright guide star as a beacon, the OTCCD can correct for wavefront tilt due to atmospheric effects as well as compensation for telescope shake, which in turn enhances the resolution and SNR. However, for wide field-of-view imaging the atmospheric wavefront distortions decorrelate over distances more than a few 10's of arcmin and hence an array of independently driven OTCCDs is required. To resolve this issue we developed the OTA, which consists of a two-dimensional array of OTCCDs combined with addressing and control logic to enable independent clocking of each OTCCD. This device enables spatially varying electronic tip-tilt correction and was developed for the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) program at the University of Hawaii Institute for Astronomy (UH/IfA)
READ LESS

Summary

The orthogonal transfer array (OTA) is a novel charge-coupled device (CCD) imager based on the orthogonal-transfer CCD (OTCCD). The OTCCD, in turn, is a device capable of charge transfer in all directions and has been developed for adaptive imaging in ground-based astronomy. By using a bright guide star as a...

READ MORE

Cryogenic YB3+-doped solid-state lasers

Published in:
IEEE J. Sel. Topics in Quantum Electron., Vol. 13, No. 3, May/June 2007, pp. 448-459.

Summary

Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particularly true forYb3+ lasers because of their relatively lowquantum defect and relatively broadband absorption even at cryogenic temperatures. Thermo-optic properties of host materials, including thermal conductivity, thermal expansion, and refractive index at low temperature, are reviewed and data presented for YAG (ceramic and single crystal), GGG, GdVO4, and Y2O3. Spectroscopic properties of Yb:YAG and Yb:LiYF4 (YLF) including absorption cross sections, emission cross sections, and fluorescence lifetimes at cryogenic temperatures are characterized. Recent experiments have pushed the power from an end-pumped cryogenically cooled Yb:YAG laser to 455-W continuous-wave output power from 640-W incident pump power at anM2 of 1.4.
READ LESS

Summary

Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particularly true forYb3+ lasers because of their relatively lowquantum defect and relatively broadband absorption even at cryogenic temperatures. Thermo-optic properties of host materials...

READ MORE

High-power, slab-coupled optical waveguide laser array packaging for beam combining

Published in:
SPIE Vol. 6478, Photonics Packaging, Integration, and Interconnects VII, 23-25 January 2007, pp. 647806-1 - 647806-12.

Summary

Linear arrays of slab coupled optical waveguide lasers (SCOWL) are ideal sources for beam combining of array elements using techniques such as wavelength beam combining (WBC) and possibly coherent beam combining (CBC). SCOWL array elements have very high brightness, low divergence nearly diffraction limited output beams. Arrays of up to 1.2 cm in width containing as many as 240 elements have been demonstrated. In this presentation, the packaging techniques developed to ensure proper performance of SCOWL arrays will be described, with particular emphasis on the application to beam combining. A commercial high performance micro impingement cooler (MIC) was used to provide thermal management for these arrays. Based on performance data for this cooler, a numerical thermal model was constructed and used to investigate the thermal performance for several packaging schemes. In order to promote uniform optical performance of SCOWL array elements, assembly procedures, which included fluxless soldering using In and AuSn solder alloys, along with the use of thermal expansion matching materials were investigated. These techniques resulted in minimal contraction ([approx] 2 um) and smile ([approx]1 um) of the laser bar during the packaging procedure. Precise control of these parameters is required in order to minimize any detrimental impact on the resultant WBC beam quality. CBC of SCOWL arrays requires phase control of the array elements. Array packaging providing for individual electrical addressability of the array elements has been developed and demonstrated, allowing for phase control by current adjustment.
READ LESS

Summary

Linear arrays of slab coupled optical waveguide lasers (SCOWL) are ideal sources for beam combining of array elements using techniques such as wavelength beam combining (WBC) and possibly coherent beam combining (CBC). SCOWL array elements have very high brightness, low divergence nearly diffraction limited output beams. Arrays of up to...

READ MORE

Lincoln Laboratory high-speed solid-state imager technology

Published in:
SPIE Vol. 6279, 27th Int. Congress on High-Speed Photography and Photonics, 17-22 September 2006, 62791K.

Summary

Massachusetts Institute of Technology, Lincoln Laboratory (MIT LL) has been developing both continuous and burst solid-state focal-plane-array technology for a variety of high-speed imaging applications. For continuous imaging, a 128 ¿ 128-pixel charge coupled device (CCD) has been fabricated with multiple output ports for operating rates greater than 10,000 frames per second with readout noise of less than 10 e- rms. An electronic shutter has been integrated into the pixels of the back-illuminated (BI) CCD imagers that give snapshot exposure times of less than 10 ns. For burst imaging, a 5 cm x 5 cm, 512 x 512-element, multi-frame CCD imager that collects four sequential image frames at megahertz rates has been developed for the Los Alamos National Laboratory Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. To operate at fast frame rates with high sensitivity, the imager uses the same electronic shutter technology as the continuously framing 128 x 128 CCD imager. The design concept and test results are described for the burst-frame-rate imager. Also discussed is an evolving solid-state imager technology that has interesting characteristics for creating large-format x-ray detectors with ultra-short exposure times (100 to 300 ps). The detector will consist of CMOS readouts for high speed sampling (tens of picoseconds transistor switching times) that are bump bonded to deep-depletion silicon photodiodes. A 64 x 64-pixel CMOS test chip has been designed, fabricated and characterized to investigate the feasibility of making large-format detectors with short, simultaneous exposure times.
READ LESS

Summary

Massachusetts Institute of Technology, Lincoln Laboratory (MIT LL) has been developing both continuous and burst solid-state focal-plane-array technology for a variety of high-speed imaging applications. For continuous imaging, a 128 ¿ 128-pixel charge coupled device (CCD) has been fabricated with multiple output ports for operating rates greater than 10,000 frames...

READ MORE

Coherent beam combining of large number of PM fibres in 2-D fibre array

Published in:
Electron. Lett., Vol. 42, No. 18, 31 August 2006, pp. 17-18.

Summary

Coherent combining of a record 48 PM fibres in a phased array configuration is reported. The resulting Strehl ratio degrades by
READ LESS

Summary

Coherent combining of a record 48 PM fibres in a phased array configuration is reported. The resulting Strehl ratio degrades by

READ MORE

250 mW, 1.5 um monolithic passively mode-locked slab-coupled optical waveguide laser

Published in:
Opt. Lett., Vol. 31, No. 2, January 15, 2006, pp. 223-225.

Summary

We report the demonstration of a 1.5 um InGaAsP mode-locked slab-coupled optical waveguide laser (SCOWL) producing 10 ps pulses with energies of 58 pJ and average output powers of 250 mW at a repetition rate of 4.29 GHz. To the best of our knowledge, this is the first passively mode-locked slab-coupled optical waveguide laser. The large mode and low confinement factor of the SCOWL architecture allows the realization of monolithic mode-locked lasers with high output power and pulse energy. The laser output is nearly diffraction limited with M2 values less than 1.2 in both directions.
READ LESS

Summary

We report the demonstration of a 1.5 um InGaAsP mode-locked slab-coupled optical waveguide laser (SCOWL) producing 10 ps pulses with energies of 58 pJ and average output powers of 250 mW at a repetition rate of 4.29 GHz. To the best of our knowledge, this is the first passively mode-locked...

READ MORE

LLiST - a new star tracker camera for tip-tilt correction at IOTA

Published in:
2004 SPIE Conf. on Astronomical Telescopes and Instrumentation, 21-26 June 2004.

Summary

The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that their error imposed on visibility measurements becomes comparable to, and even smaller than, that of higher-order aberrations.
READ LESS

Summary

The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the...

READ MORE