Publications

Refine Results

(Filters Applied) Clear All

Cloud computing in tactical environments

Summary

Ground personnel at the tactical edge often lack data and analytics that would increase their effectiveness. To address this problem, this work investigates methods to deploy cloud computing capabilities in tactical environments. Our approach is to identify representative applications and to design a system that spans the software/hardware stack to support such applications while optimizing the use of scarce resources. This paper presents our high-level design and the results of initial experiments that indicate the validity of our approach.
READ LESS

Summary

Ground personnel at the tactical edge often lack data and analytics that would increase their effectiveness. To address this problem, this work investigates methods to deploy cloud computing capabilities in tactical environments. Our approach is to identify representative applications and to design a system that spans the software/hardware stack to...

READ MORE

Development of a high-throughput microwave imaging system for concealed weapons detection

Summary

A video-rate microwave imaging aperture for concealed threat detection can serve as a useful tool in securing crowded, high foot traffic environments. Realization of such a system presents two major technical challenges: 1) implementation of an electrically large antenna array for capture of a moving subject, and 2) fast image reconstruction on cost-effective computing hardware. This paper presents a hardware-efficient multistatic array design to address the former challenge, and a compatible fast imaging technique to address the latter. Prototype hardware which forms a partition of an imaging aperture is discussed. Using this hardware, it is shown that the proposed array design can be used to form high-fidelity 3D images, and that the presented image reconstruction technique can form an image of a human-sized domain in ≤ 0.1s with low cost computing hardware.
READ LESS

Summary

A video-rate microwave imaging aperture for concealed threat detection can serve as a useful tool in securing crowded, high foot traffic environments. Realization of such a system presents two major technical challenges: 1) implementation of an electrically large antenna array for capture of a moving subject, and 2) fast image...

READ MORE

Scalable prototyping testbed for MMW imager system

Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.

Summary

A prototyping testbed for an experimental millimeter-wave multiple-imput multiple-output (MIMO) radar system for security applications in high foot-traffic areas will be presented. The system is designed for flexible operation at a 10 Hz video rate, enabled by high-speed electronic scanning and real-time signal processing. Overall imaging system costs are reduced by the use of an innovative ultra-sparse multistatic radar solution and a 3-D near-field beamforming image construction technique targeted for low-cost high-throughput GPU processors. The testbed is architected with FPGAs, GPUs, CPU storage, and networking, capable of supporting future growth in capabilities, such as interference suppression & advanced signal processing algorithms, auxiliary sensing modalities, near-sensor analytics, and integration into a system-of-systems security architecture.
READ LESS

Summary

A prototyping testbed for an experimental millimeter-wave multiple-imput multiple-output (MIMO) radar system for security applications in high foot-traffic areas will be presented. The system is designed for flexible operation at a 10 Hz video rate, enabled by high-speed electronic scanning and real-time signal processing. Overall imaging system costs are reduced...

READ MORE

Sparse volterra systems: theory and practice

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 25-31 May 2013.

Summary

Nonlinear effects limit analog circuit performance, causing both in-band and out-of-band distortion. The classical Volterra series provides an accurate model of many nonlinear systems, but the number of parameters grows extremely quickly as the memory depth and polynomial order are increased. Recently, concepts from compressed sensing have been applied to nonlinear system modeling in order to address this issue. This work investigates the theory and practice of applying compressed sensing techniques to nonlinear system identification under the constraints of typical radio frequency (RF) laboratories. The main theoretical result shows that these techniques are capable of identifying sparse Memory Polynomials using only single-tone training signals rather than pseudorandom noise. Empirical results using laboratory measurements of an RF receiver show that sparse Generalized Memory Polynomials can also be recovered from two-tone signals.
READ LESS

Summary

Nonlinear effects limit analog circuit performance, causing both in-band and out-of-band distortion. The classical Volterra series provides an accurate model of many nonlinear systems, but the number of parameters grows extremely quickly as the memory depth and polynomial order are increased. Recently, concepts from compressed sensing have been applied to...

READ MORE

Novel graph processor architecture

Published in:
Lincoln Laboratory Journal, Vol. 20, No. 1, 2013, pp. 92-104.

Summary

Graph algorithms are increasingly used in applications that exploit large databases. However, conventional processor architectures are hard-pressed to handle the throughput and memory requirements of graph computation. Lincoln Laboratory's graph-processor architecture represents a fundamental rethinking of architectures. It utilizes innovations that include high-bandwidth three-dimensional (3D) communication links, a sparse matrix-based graph instruction set, accelerator-based architecture, a systolic sorter, randomized communications, a cacheless memory system, and 3D packaging.
READ LESS

Summary

Graph algorithms are increasingly used in applications that exploit large databases. However, conventional processor architectures are hard-pressed to handle the throughput and memory requirements of graph computation. Lincoln Laboratory's graph-processor architecture represents a fundamental rethinking of architectures. It utilizes innovations that include high-bandwidth three-dimensional (3D) communication links, a sparse matrix-based...

READ MORE

Driving big data with big compute

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the big data and big compute communities together is an active area of research. The LLGrid team has developed and deployed a number of technologies that aim to provide the best of both worlds. LLGrid MapReduce allows the map/reduce parallel programming model to be used quickly and efficiently in any language on any compute cluster. D4M (Dynamic Distributed Dimensional Data Model) provided a high level distributed arrays interface to the Apache Accumulo database. The accessibility of these technologies is assessed by measuring the effort to use these tools and is typically a few lines of code. The performance is assessed by measuring the insert rate into the Accumulo database. Using these tools a database insert rate of 4M inserts/second has been achieved on an 8 node cluster.
READ LESS

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the...

READ MORE

Scalable cryptographic authentication for high performance computing

Summary

High performance computing (HPC) uses supercomputers and computing clusters to solve large computational problems. Frequently HPC resources are shared systems and access to restricted data sets or resources must be authenticated. These authentication needs can take multiple forms, both internal and external to the HPC cluster. A computational stack that uses web services among nodes in the HPC may need to perform authentication between nodes of the same job or a job may need to reach out to data sources outside the HPC. Traditional authentication mechanisms such as passwords or digital certificates encounter issues with the distributed and potentially disconnected nature of HPC systems. Distributing and storing plain-text passwords or cryptographic keys among nodes in a HPC system without special protection is a poor security practice. Systems that reach back to the user's terminal for access to the authenticator are possible, but only in fully interactive supercomputing where connectivity to the user's terminal can be guaranteed. Point solutions can be enabled for these use cases, such as software-based role or self-signed certificates, however they require significant expertise in digital certificates to configure. A more general solution is called for that is both secure and easy to use. This paper presents an overview of a solution implemented on the interactive, on-demand LLGrid computing system at MIT Lincoln Laboratory and its use to solve one such authentication problem.
READ LESS

Summary

High performance computing (HPC) uses supercomputers and computing clusters to solve large computational problems. Frequently HPC resources are shared systems and access to restricted data sets or resources must be authenticated. These authentication needs can take multiple forms, both internal and external to the HPC cluster. A computational stack that...

READ MORE

A scalable signal processing architecture for massive graph analysis

Published in:
ICASSP 2012, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 25-30 March 2012, pp. 5329-32.

Summary

In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the entire processing chain, from data storage to graph construction to graph analysis and subgraph detection. The data are stored in a new format that allows easy extraction of graphs representing any relationship existing in the data. The principal analysis algorithm is the partial eigendecomposition of the modularity matrix, whose running time is discussed. A large document dataset is analyzed, and we present subgraphs that stand out in the principal eigenspace of the time varying graphs, including behavior we regard as clutter as well as small, tightly-connected clusters that emerge over time.
READ LESS

Summary

In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the...

READ MORE

Moments of parameter estimates for Chung-Lu random graph models

Published in:
ICASSP 2012, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 25-30 March 2012, pp. 3961-4.

Summary

As abstract representations of relational data, graphs and networks find wide use in a variety of fields, particularly when working in non- Euclidean spaces. Yet for graphs to be truly useful in in the context of signal processing, one ultimately must have access to flexible and tractable statistical models. One model currently in use is the Chung- Lu random graph model, in which edge probabilities are expressed in terms of a given expected degree sequence. An advantage of this model is that its parameters can be obtained via a simple, standard estimator. Although this estimator is used frequently, its statistical properties have not been fully studied. In this paper, we develop a central limit theory for a simplified version of the Chung-Lu parameter estimator. We then derive approximations for moments of the general estimator using the delta method, and confirm the effectiveness of these approximations through empirical examples.
READ LESS

Summary

As abstract representations of relational data, graphs and networks find wide use in a variety of fields, particularly when working in non- Euclidean spaces. Yet for graphs to be truly useful in in the context of signal processing, one ultimately must have access to flexible and tractable statistical models. One...

READ MORE

Identification and compensation of Wiener-Hammerstein systems with feedback

Published in:
ICASSP 2011, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 22-27 May 2011, pp. 4056-4059.

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or feedback filter are more tractable but more difficult to identify. In this paper, we extend a Wiener-Hammerstein identification method to such systems showing that identification is possible (up to inherent model ambiguities) from single- and two-tone measurements. We also calculate the Cramer-Rao bound for the system parameters and compare to our identification method in simulation. Finally, we demonstrate equalization performance using measured data from a wideband GaN power amplifier.
READ LESS

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or...

READ MORE

Showing Results

1-10 of 15