Summary
Multi-sensor receivers are commonly tasked with detecting, demodulating and geolocating target emitters over very wide frequency bands. Compressed sensing can be applied to persistently monitor a wide bandwidth, given that the received signal can be represented using a small number of coefficients in some basis. In this paper we present a multi-sensor compressive sensing receiver that is capable of reconstructing frequency-sparse signals using block reconstruction techniques in a sensor-frequency basis. We derive performance bounds for time-difference and angle of arrival (AoA) estimation of such a receiver, and present simulated results in which we compare AoA reconstruction performance to the bounds derived.