Publications

Refine Results

(Filters Applied) Clear All

Geographic source estimation using airborne plant environmental DNA in dust

Summary

Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis, we developed a pipeline that utilizes the environmental DNA (eDNA) from plants in dust samples to estimate previous sample location(s). The species of plant-derived eDNA within dust samples were identified using metabarcoding and their geographic distributions were then derived from occurrence records in the USGS Biodiversity in Service of Our Nation (BISON) database. The distributions for all plant species identified in a sample were used to generate a probabilistic estimate of the sample source. With settled dust collected at four U.S. sites over a 15-month period, we demonstrated positive regional geolocation (within 600 km2 of the collection point) with 47.6% (20 of 42) of the samples analyzed. Attribution accuracy and resolution was dependent on the number of plant species identified in a dust sample, which was greatly affected by the season of collection. In dust samples that yielded a minimum of 20 identified plant species, positive regional attribution improved to 66.7% (16 of 24 samples). Using dust samples collected from 31 different U.S. sites, trace plant eDNA provided relevant regional attribution information on provenance in 32.2%. This demonstrated that analysis of plant eDNA in dust can provide an accurate estimate regional provenance within the U.S., and relevant forensic information, for a substantial fraction of samples analyzed.
READ LESS

Summary

Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis, we developed a pipeline that utilizes the environmental DNA (eDNA) from plants in dust samples to estimate previous sample...

READ MORE

PATHATTACK: attacking shortest paths in complex networks

Summary

Shortest paths in complex networks play key roles in many applications. Examples include routing packets in a computer network, routing traffic on a transportation network, and inferring semantic distances between concepts on the World Wide Web. An adversary with the capability to perturb the graph might make the shortest path between two nodes route traffic through advantageous portions of the graph (e.g., a toll road he owns). In this paper, we introduce the Force Path Cut problem, in which there is a specific route the adversary wants to promote by removing a minimum number of edges in the graph. We show that Force Path Cut is NP-complete, but also that it can be recast as an instance of the Weighted Set Cover problem, enabling the use of approximation algorithms. The size of the universe for the set cover problem is potentially factorial in the number of nodes. To overcome this hurdle, we propose the PATHATTACK algorithm, which via constraint generation considers only a small subset of paths|at most 5% of the number of edges in 99% of our experiments. Across a diverse set of synthetic and real networks, the linear programming formulation of Weighted Set Cover yields the optimal solution in over 98% of cases. We also demonstrate a time/cost tradeoff using two approximation algorithms and greedy baseline methods. This work provides a foundation for addressing similar problems and expands the area of adversarial graph mining beyond recent work on node classification and embedding.
READ LESS

Summary

Shortest paths in complex networks play key roles in many applications. Examples include routing packets in a computer network, routing traffic on a transportation network, and inferring semantic distances between concepts on the World Wide Web. An adversary with the capability to perturb the graph might make the shortest path...

READ MORE

Health-informed policy gradients for multi-agent reinforcement learning

Summary

This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual agents to the global reward. The health-informed credit assignment is then extended to a multi-agent variant of the proximal policy optimization algorithm and demonstrated on simple particle environments that have elements of system health, risk-taking, semi-expendable agents, and partial observability. We show significant improvement in learning performance compared to policy gradient methods that do not perform multi-agent credit assignment.
READ LESS

Summary

This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual agents to the global reward. The health-informed credit assignment is then...

READ MORE

Mobile capabilities for micro-meteorological predictions: FY20 Homeland Protection and Air Traffic Control Technical Investment Program

Published in:
MIT Lincoln Laboratory Report TIP-146

Summary

Existing operational numerical weather forecast systems are geographically too coarse and not sufficiently accurate to adequately support future needs in applications such as Advanced Air Mobility, Unmanned Aerial Systems, and wildfire forecasting. This is especially true with respect to wind forecasts. Principal factors contributing to this are the lack of observation data within the atmospheric boundary layer and numerical forecast models that operate on low-resolution grids. This project endeavored to address both of these issues. Firstly, by development and demonstration of specially equipped fixed-wing drones to collect atmospheric data within the boundary layer, and secondly by creating a high-resolution weather research forecast model executing on the Lincoln Laboratory Supercomputing Center. Some success was achieved in the development and flight testing of the specialized drones. Significant success was achieved in the development of the high-resolution forecasting system and demonstrating the feasibility of ingesting atmospheric observations from small airborne platforms.
READ LESS

Summary

Existing operational numerical weather forecast systems are geographically too coarse and not sufficiently accurate to adequately support future needs in applications such as Advanced Air Mobility, Unmanned Aerial Systems, and wildfire forecasting. This is especially true with respect to wind forecasts. Principal factors contributing to this are the lack of...

READ MORE

Combating Misinformation: HLT Highlights from MIT Lincoln Laboratory

Published in:
Human Language Technology Conference (HLTCon), 16-18 March 2021.

Summary

Dr. Joseph Campbell shares several human language technologies highlights from MIT Lincoln Laboratory. These include key enabling technologies in combating misinformation to link personas, analyze content, and understand human networks. Developing operationally relevant technologies requires access to corresponding data with meaningful evaluations, as Dr. Douglas Reynolds presented in his keynote. As Dr. Danelle Shah discussed in her keynote, it’s crucial to develop these technologies to operate at deeper levels than the surface. Producing reliable information from the fusion of missing and inherently unreliable information channels is paramount. Furthermore, the dynamic misinformation environment and the coevolution of allied methods with adversarial methods represent additional challenges
READ LESS

Summary

Dr. Joseph Campbell shares several human language technologies highlights from MIT Lincoln Laboratory. These include key enabling technologies in combating misinformation to link personas, analyze content, and understand human networks. Developing operationally relevant technologies requires access to corresponding data with meaningful evaluations, as Dr. Douglas Reynolds presented in his keynote...

READ MORE

Combating Misinformation: What HLT Can (and Can't) Do When Words Don't Say What They Mean

Author:
Published in:
Human Language Technology Conference (HLTCon), 16-18 March 2021.

Summary

Misinformation, disinformation, and “fake news” have been used as a means of influence for millennia, but the proliferation of the internet and social media in the 21st century has enabled nefarious campaigns to achieve unprecedented scale, speed, precision, and effectiveness. In the past few years, there has been significant recognition of the threats posed by malign influence operations to geopolitical relations, democratic institutions and processes, public health and safety, and more. At the same time, the digitization of communication offers tremendous opportunities for human language technologies (HLT) to observe, interpret, and understand this publicly available content. The ability to infer intent and impact, however, remains much more elusive.
READ LESS

Summary

Misinformation, disinformation, and “fake news” have been used as a means of influence for millennia, but the proliferation of the internet and social media in the 21st century has enabled nefarious campaigns to achieve unprecedented scale, speed, precision, and effectiveness. In the past few years, there has been significant recognition...

READ MORE

Multilayer microhydraulic actuators with speed and force configurations

Author:
Published in:
Microsyst. Nanoeng., Vol. 7, Art. No. 22, 2021.

Summary

Electrostatic motors have traditionally required high voltage and provided low torque, leaving them with a vanishingly small portion of the motor application space. The lack of robust electrostatic motors is of particular concern in microsystems because inductive motors do not scale well to small dimensions. Often, microsystem designers have to choose from a host of imperfect actuation solutions, leading to high voltage requirements or low efficiency and thus straining the power budget of the entire system. In this work, we describe a scalable three-dimensional actuator technology that is based on the stacking of thin microhydraulic layers. This technology offers an actuation solution at 50 volts, with high force, high efficiency, fine stepping precision, layering, low abrasion, and resistance to pull-in instability. Actuator layers can also be stacked in different configurations trading off speed for force, and the actuator improves quadratically in power density when its internal dimensions are scaled-down.
READ LESS

Summary

Electrostatic motors have traditionally required high voltage and provided low torque, leaving them with a vanishingly small portion of the motor application space. The lack of robust electrostatic motors is of particular concern in microsystems because inductive motors do not scale well to small dimensions. Often, microsystem designers have to...

READ MORE

Multimodal representation learning via maximization of local mutual information [e-print]

Published in:
Intl. Conf. on Medical Image Computing and Computer Assisted Intervention, MICCAI, 27 September-1 October 2021.

Summary

We propose and demonstrate a representation learning approach by maximizing the mutual information between local features of images and text. The goal of this approach is to learn useful image representations by taking advantage of the rich information contained in the free text that describes the findings in the image. Our method learns image and text encoders by encouraging the resulting representations to exhibit high local mutual information. We make use of recent advances in mutual information estimation with neural network discriminators. We argue that, typically, the sum of local mutual information is a lower bound on the global mutual information. Our experimental results in the downstream image classification tasks demonstrate the advantages of using local features for image-text representation learning.
READ LESS

Summary

We propose and demonstrate a representation learning approach by maximizing the mutual information between local features of images and text. The goal of this approach is to learn useful image representations by taking advantage of the rich information contained in the free text that describes the findings in the image...

READ MORE

Learning emergent discrete message communication for cooperative reinforcement learning

Published in:
37th Conf. on Uncertainty in Artificial Intelligence, UAI 2021, early access, 26-30 July 2021.

Summary

Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretability. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase the interpretability for human designers and other agents. This paper proposes a method to generate discrete messages analogous to human languages, and achieve communication by a broadcast-and-listen mechanism based on self-attention. We show that discrete message communication has performance comparable to continuous message communication but with much a much smaller vocabulary size. Furthermore, we propose an approach that allows humans to interactively send discrete messages to agents.
READ LESS

Summary

Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretability. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase...

READ MORE

More than a fair share: Network Data Remanence attacks against secret sharing-based schemes

Published in:
Network and Distributed Systems Security Symp., NDSS, 23-26 February 2021.

Summary

With progress toward a practical quantum computer has come an increasingly rapid search for quantum-safe, secure communication schemes that do not rely on discrete logarithm or factorization problems. One such encryption scheme, Multi-path Switching with Secret Sharing (MSSS), combines secret sharing with multi-path switching to achieve security as long as the adversary does not have global observability of all paths and thus cannot capture enough shares to reconstruct messages. MSSS assumes that sending a share on a path is an atomic operation and all paths have the same delay. In this paper, we identify a side-channel vulnerability for MSSS, created by the fact that in real networks, sending a share is not an atomic operation as paths have multiple hops and different delays. This channel, referred to as Network Data Remanence (NDR), is present in all schemes like MSSS whose security relies on transfer atomicity and all paths having same delay. We demonstrate the presence of NDR in a physical testbed. We then identify two new attacks that aim to exploit the side channel, referred to as NDR Blind and NDR Planned, propose an analytical model to analyze the attacks, and demonstrate them using an implementation of MSSS based on the ONOS SDN controller. Finally, we present a countermeasure for the attacks and show its effectiveness in simulations and Mininet experiments.
READ LESS

Summary

With progress toward a practical quantum computer has come an increasingly rapid search for quantum-safe, secure communication schemes that do not rely on discrete logarithm or factorization problems. One such encryption scheme, Multi-path Switching with Secret Sharing (MSSS), combines secret sharing with multi-path switching to achieve security as long as...

READ MORE