Publications

Refine Results

(Filters Applied) Clear All

Using oculomotor features to predict changes in optic nerve sheath diameter and ImPACT scores from contact-sport athletes

Summary

There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential for oculomotor features to complement existing diagnostic tools, such as measurements of Optic Nerve Sheath Diameter (ONSD) and Immediate Post-concussion Assessment and Cognitive Testing (ImPACT). Thirty-one high school American football and soccer athletes were tracked through the course of a sports season. Given the high risk of repetitive head impacts associated with both soccer and football, our hypotheses were that (1) ONSD and ImPACT scores would worsen through the season and (2) oculomotor features would effectively capture both neurophysiological changes reflected by ONSD and neuro-functional status assessed via ImPACT. Oculomotor features were used as input to Linear Mixed-Effects Regression models to predict ONSD and ImPACT scores as outcomes. Prediction accuracy was evaluated to identify explicit relationships between eye movements, ONSD, and ImPACT scores. Significant Pearson correlations were observed between predicted and actual outcomes for ONSD (Raw = 0.70; Normalized = 0.45) and for ImPACT (Raw = 0.86; Normalized = 0.71), demonstrating the capability of oculomotor features to capture neurological changes detected by both ONSD and ImPACT. The most predictive features were found to relate to motor control and visual-motor processing. In future work, oculomotor models, linking neural structures to oculomotor function, can be built to gain extended mechanistic insights into neurophysiological changes observed through seasons of participation in contact sports.
READ LESS

Summary

There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential...

READ MORE

Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid

Summary

Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to acoustic streams in the environment. To address the former, we present a system for joint speaker separation and noise suppression, referred to as the Binaural Enhancement via Attention Masking Network (BEAMNET). The BEAMNET system is an end-to-end neural network architecture based on self-attention. Binaural input waveforms are mapped to a joint embedding space via a learned encoder, and separate multiplicative masking mechanisms are included for noise suppression and speaker separation. Pairs of output binaural waveforms are then synthesized using learned decoders, each capturing a separated speaker while maintaining spatial cues. A key contribution of BEAMNET is that the architecture contains a separation path, an enhancement path, and an autoencoder path. This paper proposes a novel loss function which simultaneously trains these paths, so that disabling the masking mechanisms during inference causes BEAMNET to reconstruct the input speech signals. This allows dynamic control of the level of suppression applied by BEAMNET via a minimum gain level, which is not possible in other state-of-the-art approaches to end-to-end speaker separation. This paper also proposes a perceptually-motivated waveform distance measure. Using objective speech quality metrics, the proposed system is demonstrated to perform well at separating two equal-energy talkers, even in high levels of background noise. Subjective testing shows an improvement in speech intelligibility across a range of noise levels, for signals with artificially added head-related transfer functions and background noise. Finally, when used as part of an auditory attention decoder (AAD) system using existing electroencephalogram (EEG) data, BEAMNET is found to maintain the decoding accuracy achieved with ideal speaker separation, even in severe acoustic conditions. These results suggest that this enhancement system is highly effective at decoding auditory attention in realistic noise environments, and could possibly lead to improved speech perception in a cognitively controlled hearing aid.
READ LESS

Summary

Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to...

READ MORE

Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor perturbations, delivered in a highly instrumented, immersive virtual environment, would challenge sensory subsystems recruited for balance through conflicting multi-sensory evidence, and therefore reveal that not all subsystems are performing optimally. The results show that, as compared to standard clinical tests, the provocative perturbations illuminate balance impairments in subjects who have had mild traumatic brain injuries. Perturbations delivered while subjects were walking provided greater discriminability (average accuracy ≈ 0.90) than those delivered during standing (average accuracy ≈ 0.65) between mTBI subjects and healthy controls. Of the categories of features extracted to characterize balance, the lower limb accelerometry-based metrics proved to be most informative. Further, in response to perturbations, subjects with an mTBI utilized hip strategies more than ankle strategies to prevent loss of balance and also showed less variability in gait patterns. We have shown that sensorimotor conflicts illuminate otherwise-hidden balance impairments, which can be used to increase the sensitivity of current clinical procedures. This augmentation is vital in order to robustly detect the presence of balance impairments after mTBI and potentially define a phenotype of balance dysfunction that enhances risk of injury.
READ LESS

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor...

READ MORE

Predicting cognitive load and operational performance in a simulated marksmanship task

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we developed a simulated marksmanship scenario with an embedded working memory task in an immersive virtual reality environment. As participants performed the marksmanship task, they were instructed to remember numbered targets and recall the sequence of those targets at the end of the trial. Low and high cognitive load conditions were defined as the recall of three- and six-digit strings, respectively. Physiological and behavioral signals recorded included speech, heart rate, breathing rate, and body movement. These features were input into a random forest classifier that significantly discriminated between the low- and high-cognitive load conditions (AUC=0.94). Behavioral features of gait were the most informative, followed by features of speech. We also showed the capability to predict performance on the digit recall (AUC = 0.71) and marksmanship (AUC = 0.58) tasks. The experimental framework can be leveraged in future studies to quantify the interaction of other types of stressors and their impact on operational cognitive and physical performance.
READ LESS

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we...

READ MORE

Investigation of the relationship of vocal, eye-tracking, and fMRI ROI time-series measures with preclinical mild traumatic brain injury*

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between vocal features and brain ROIs that may show which components of the neural speech networks effected are effected by preclinical mild traumatic brain injury (mTBI). The data used for this study was collected by Purdue University on 32 high school athletes over the entirety of a sports season (Helfer, et al., 2014), and includes fMRI measurements made pre-season, in-season, and postseason. The athletes are 25 male football players and 7 female soccer players. The Immediate Post-Concussion Assessment and Cognitive Testing suite (ImPACT) was used as a means of assessing cognitive performance (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007). The test is made up of six sections, which measure verbal memory, visual memory, visual motor speed, reaction time, impulse control, and a total symptom composite. Using each test, a threshold is set for a change in cognitive performance. The threshold for each test is defined as a decline from baseline that exceeds one standard deviation, where the standard deviation is computed over the change from baseline across all subjects’ test scores. Speech features were extracted from audio recordings of the Grandfather Passage, which provides a standardized and phonetically balanced sample of speech. Oculomotor testing included two experimental conditions. In the smooth pursuit condition, a single target moving circularly, at constant speed. In the saccade condition, a target was jumped between one of three location along the horizontal midline of the screen. In both trial types, subjects visually tracked the targets during the trials, which lasted for one minute. The fMRI features are derived from the bold time-series data from resting state fMRI scans of the subjects. The pre-processing of the resting state fMRI and accompanying structural MRI data (for Atlas registration) was performed with the toolkit CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012). Functional connectivity was generated using cortical and sub-cortical atlas registrations. This investigation will explores correlations between these three modalities and a cognitive performance assessment.
READ LESS

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between...

READ MORE

Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which should be enhanced for the listener and which should be suppressed. Traditionally, researchers have separated the AAD problem into two stages: reconstruction of a representation of the attended audio from neural signals, followed by determining the similarity between the candidate audio streams and the reconstruction. Here, we compare the traditional two-stage approach with a novel neural-network architecture that subsumes the explicit similarity step. We compare this new architecture against linear and non-linear (neural-network) baselines using both wet and dry electroencephalogram (EEG) systems. Our results indicate that the new architecture outperforms the baseline linear stimulus-reconstruction method, improving decoding accuracy from 66% to 81% using wet EEG and from 59% to 87% for dry EEG. Also of note was the finding that the dry EEG system can deliver comparable or even better results than the wet, despite the latter having one third as many EEG channels as the former. The 11-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject, dry-electrode AAD dataset, and our software are available for further validation, experimentation, and modification.
READ LESS

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which...

READ MORE

Detecting depression using vocal, facial and semantic communication cues

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.
READ LESS

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In...

READ MORE

Relation of automatically extracted formant trajectories with intelligibility loss and speaking rate decline in amyotrophic lateral sclerosis

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics of the first (F1) and second (F2) formant frequency trajectories and their first and second derivatives. Motivated by a possible link between components of formant dynamics and specific articulator movements, these features were also computed for low-pass and high-pass filtered formant trajectories. When compared to clinician-rated intelligibility and speaking rate assessments, F2 features, particularly mean F2 speed and a novel feature, mean F2 acceleration, were most strongly correlated with intelligibility and speaking rate, respectively (Spearman correlations > 0.70, p < 0.0001). These features also yielded the best predictions in regression experiments (r > 0.60, p < 0.0001). Comparable results were achieved using low-pass filtered F2 trajectory features, with higher correlations and lower prediction errors achieved for speaking rate over intelligibility. These findings suggest information can be exploited in specific frequency components of formant trajectories, with implications for automatic monitoring of ALS.
READ LESS

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics...

READ MORE

Relating estimated cyclic spectral peak frequency to measured epilarynx length using magnetic resonance imaging

Published in:
INTERSPEECH 2016: 16th Annual Conf. of the Int. Speech Communication Assoc., 8-12 September 2016.

Summary

The epilarynx plays an important role in speech production, carrying information about the individual speaker and manner of articulation. However, precise acoustic behavior of this lower vocal tract structure is difficult to establish. Focusing on acoustics observable in natural speech, recent spectral processing techniques isolate a unique resonance with characteristics of the epilarynx previously shown via simulation, specifically cyclicity (i.e. energy differences between the closed and open phases of the glottal cycle) in a 3-5kHz region observed across vowels. Using Magnetic Resonance Imaging (MRI), the present work relates this estimated cyclic peak frequency to measured epilarynx length. Assuming a simple quarter wavelength relationship, the cavity length estimated from the cyclic peak frequency is shown to be directly proportional (linear fit slope =1.1) and highly correlated (p = 0.85, pval<10^?4) to the measured epilarynx length across speakers. Results are discussed, as are implications in speech science and application domains.
READ LESS

Summary

The epilarynx plays an important role in speech production, carrying information about the individual speaker and manner of articulation. However, precise acoustic behavior of this lower vocal tract structure is difficult to establish. Focusing on acoustics observable in natural speech, recent spectral processing techniques isolate a unique resonance with characteristics...

READ MORE

A vocal modulation model with application to predicting depression severity

Published in:
13th IEEE Int. Conf. on Wearable and Implantable Body Sensor Networks, BSN 2016, 14-17 June 2016.

Summary

Speech provides a potential simple and noninvasive "on-body" means to identify and monitor neurological diseases. Here we develop a model for a class of vocal biomarkers exploiting modulations in speech, focusing on Major Depressive Disorder (MDD) as an application area. Two model components contribute to the envelope of the speech waveform: amplitude modulation (AM) from respiratory muscles, and AM from interaction between vocal tract resonances (formants) and frequency modulation in vocal fold harmonics. Based on the model framework, we test three methods to extract envelopes capturing these modulations of the third formant for synthesized sustained vowels. Using subsequent modulation features derived from the model, we predict MDD severity scores with a Gaussian Mixture Model. Performing global optimization over classifier parameters and number of principal components, we evaluate performance of the features by examining the root-mean-squared error (RMSE), mean absolute error (MAE), and Spearman correlation between the actual and predicted MDD scores. We achieved RMSE and MAE values 10.32 and 8.46, respectively (Spearman correlation=0.487, p<0.001), relative to a baseline RMSE of 11.86 and MAE of 10.05, obtained by predicting the mean MDD severity score. Ultimately, our model provides a framework for detecting and monitoring vocal modulations that could also be applied to other neurological diseases.
READ LESS

Summary

Speech provides a potential simple and noninvasive "on-body" means to identify and monitor neurological diseases. Here we develop a model for a class of vocal biomarkers exploiting modulations in speech, focusing on Major Depressive Disorder (MDD) as an application area. Two model components contribute to the envelope of the speech...

READ MORE