Publications
A vocal model to predict readiness under sleep deprivation
Summary
Summary
A variety of factors can affect cognitive readiness and influence human performance in tasks that are mission critical. Sleep deprivation is one of the most prevalent factors that degrade performance. One risk-mitigation approach is to use vocal biomarkers to detect cognitive fatigue and resulting performance decrements. In this study, a...
Daily activity profiles and activity fluctuations correlate with BMI
Summary
Summary
The rising levels of obesity have been declared a global epidemic by the World Health Organization, with obesity rates surpassing 50% in many countries. Between the late 1970s and the early 2000s in the U.S., the prevalence of obesity doubled while the prevalence of severe obesity more than tripled. One...
Gait instability and estimated core temperature predict exertional heat stroke
Summary
Summary
Objective Exertional heat stroke (EHS), characterised by a high core body temperature (Tcr) and central nervous system (CNS) dysfunction, is a concern for athletes, workers and military personnel who must train and perform in hot environments. The objective of this study was to determine whether algorithms that estimate Tcr from...
Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank
Summary
Summary
Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...
Using oculomotor features to predict changes in optic nerve sheath diameter and ImPACT scores from contact-sport athletes
Summary
Summary
There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential...
Estimating sedentary breathing rate from chest-worn accelerometry from free-living data
Summary
Summary
Breathing rate was estimated from chest-worn accelerometry collected from 1,522 servicemembers during training by a wearable physiological monitor. A total of 29,189 hours of training and sleep data were analyzed. The primary purpose of the monitor was to assess thermal-work strain and avoid heat injuries. The monitor design was thus...
Investigation of the relationship of vocal, eye-tracking, and fMRI ROI time-series measures with preclinical mild traumatic brain injury
Summary
Summary
In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between...
Detecting depression using vocal, facial and semantic communication cues
Summary
Summary
Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In...
Relation of automatically extracted formant trajectories with intelligibility loss and speaking rate decline in amyotrophic lateral sclerosis
Summary
Summary
Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics...
A vocal modulation model with application to predicting depression severity
Summary
Summary
Speech provides a potential simple and noninvasive "on-body" means to identify and monitor neurological diseases. Here we develop a model for a class of vocal biomarkers exploiting modulations in speech, focusing on Major Depressive Disorder (MDD) as an application area. Two model components contribute to the envelope of the speech...