Publications
Improving long-text authorship verification via model selection and data tuning
Summary
Summary
Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present...
Characterization of disinformation networks using graph embeddings and opinion mining
Summary
Summary
Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel...
Artificial intelligence: short history, present developments, and future outlook, final report
Summary
Summary
The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the...
Detection and characterization of human trafficking networks using unsupervised scalable text template matching
Summary
Summary
Human trafficking is a form of modern-day slavery affecting an estimated 40 million victims worldwide, primarily through the commercial sexual exploitation of women and children. In the last decade, the advertising of victims has moved from the streets to websites on the Internet, providing greater efficiency and anonymity for sex...
Twitter language identification of similar languages and dialects without ground truth
Summary
Summary
We present a new method to bootstrap filter Twitter language ID labels in our dataset for automatic language identification (LID). Our method combines geolocation, original Twitter LID labels, and Amazon Mechanical Turk to resolve missing and unreliable labels. We are the first to compare LID classification performance using the MIRA...
LLTools: machine learning for human language processing
Summary
Summary
Machine learning methods in Human Language Technology have reached a stage of maturity where widespread use is both possible and desirable. The MIT Lincoln Laboratory LLTools software suite provides a step towards this goal by providing a set of easily accessible frameworks for incorporating speech, text, and entity resolution components...
Predicting and analyzing factors in patent litigation
Summary
Summary
Patent litigation is an expensive and time-consuming process. To minimize its impact on the participants in the patent lifecycle, automatic determination of litigation potential is a compelling machine learning application. In this paper, we consider preliminary methods for the prediction of a patent being involved in litigation using metadata, content...
Making #sense of #unstructured text data
Summary
Summary
Automatic extraction of intelligent and useful information from data is one of the main goals in data science. Traditional approaches have focused on learning from structured features, i.e., information in a relational database. However, most of the data encountered in practice are unstructured (i.e., social media posts, forums, emails and...
Multi-modal audio, video and physiological sensor learning for continuous emotion prediction
Summary
Summary
The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the...
Detecting depression using vocal, facial and semantic communication cues
Summary
Summary
Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In...