Publications

Refine Results

(Filters Applied) Clear All

LLTools: machine learning for human language processing

Summary

Machine learning methods in Human Language Technology have reached a stage of maturity where widespread use is both possible and desirable. The MIT Lincoln Laboratory LLTools software suite provides a step towards this goal by providing a set of easily accessible frameworks for incorporating speech, text, and entity resolution components into larger applications. For the speech processing component, the pySLGR (Speaker, Language, Gender Recognition) tool provides signal processing, standard feature analysis, speech utterance embedding, and machine learning modeling methods in Python. The text processing component in LLTools extracts semantically meaningful insights from unstructured data via entity extraction, topic modeling, and document classification. The entity resolution component in LLTools provides approximate string matching, author recognition and graph-based methods for identifying and linking different instances of the same real-world entity. We show through two applications that LLTools can be used to rapidly create and train research prototypes for human language processing.
READ LESS

Summary

Machine learning methods in Human Language Technology have reached a stage of maturity where widespread use is both possible and desirable. The MIT Lincoln Laboratory LLTools software suite provides a step towards this goal by providing a set of easily accessible frameworks for incorporating speech, text, and entity resolution components...

READ MORE

Cross-domain entity resolution in social media

Published in:
4th Int. Workshop on Natural Language Processing for Social Media, SocialNLP with IJCAI, 11 July 2016.

Summary

The challenge of associating entities across multiple domains is a key problem in social media understanding. Successful cross-domain entity resolution provides integration of information from multiple sites to create a complete picture of user and community activities, characteristics, and trends. In this work, we examine the problem of entity resolution across Twitter and Instagram using general techniques. Our methods fall into three categories: profile, content, and graph based. For the profile-based methods, we consider techniques based on approximate string matching. For content-based methods, we perform author identification. Finally, for graph-based methods, we apply novel cross-domain community detection methods and generate neighborhood-based features. The three categories of methods are applied to a large graph of users in Twitter and Instagram to understand challenges, determine performance, and understand fusion of multiple methods. Final results demonstrate an equal error rate less than 1%.
READ LESS

Summary

The challenge of associating entities across multiple domains is a key problem in social media understanding. Successful cross-domain entity resolution provides integration of information from multiple sites to create a complete picture of user and community activities, characteristics, and trends. In this work, we examine the problem of entity resolution...

READ MORE

A reverse approach to named entity extraction and linking in microposts

Published in:
Proc. of the 6th Workshop on "Making Sense of Microposts" (part of: 25th Int. World Wide Web Conf., 11 April 2016), #Microposts2016, pp. 67-69.

Summary

In this paper, we present a pipeline for named entity extraction and linking that is designed specifically for noisy, grammatically inconsistent domains where traditional named entity techniques perform poorly. Our approach leverages a large knowledge base to improve entity recognition, while maintaining the use of traditional NER to identify mentions that are not co-referent with any entities in the knowledge base.
READ LESS

Summary

In this paper, we present a pipeline for named entity extraction and linking that is designed specifically for noisy, grammatically inconsistent domains where traditional named entity techniques perform poorly. Our approach leverages a large knowledge base to improve entity recognition, while maintaining the use of traditional NER to identify mentions...

READ MORE

Named entity recognition in 140 characters or less

Published in:
Proc. of the 6th Workshop on "Making Sense of Microposts" (part of: 25th Int. World Wide Web Conf., 11 April 2016), #Microposts2016, pp. 78-79.

Summary

In this paper, we explore the problem of recognizing named entities in microposts, a genre with notoriously little context surrounding each named entity and inconsistent use of grammar, punctuation, capitalization, and spelling conventions by authors. In spite of the challenges associated with information extraction from microposts, it remains an increasingly important genre. This paper presents the MIT Information Extraction Toolkit (MITIE) and explores its adaptability to the micropost genre.
READ LESS

Summary

In this paper, we explore the problem of recognizing named entities in microposts, a genre with notoriously little context surrounding each named entity and inconsistent use of grammar, punctuation, capitalization, and spelling conventions by authors. In spite of the challenges associated with information extraction from microposts, it remains an increasingly...

READ MORE

Improved hidden clique detection by optimal linear fusion of multiple adjacency matrices

Published in:
2015 Asilomar Conf. on Signals, Systems and Computers, 8-11 November 2015.

Summary

Graph fusion has emerged as a promising research area for addressing challenges associated with noisy, uncertain, multi-source data. While many ad-hoc graph fusion techniques exist in the current literature, an analytical approach for analyzing the fundamentals of the graph fusion problem is lacking. We consider the setting where we are given multiple Erdos-Renyi modeled adjacency matrices containing a common hidden or planted clique. The objective is to combine them linearly so that the principal eigenvectors of the resulting matrix best reveal the vertices associated with the clique. We utilize recent results from random matrix theory to derive the optimal weighting coefficients and use these insights to develop a data-driven fusion algorithm. We demonstrate the improved performance of the algorithm relative to other simple heuristics.
READ LESS

Summary

Graph fusion has emerged as a promising research area for addressing challenges associated with noisy, uncertain, multi-source data. While many ad-hoc graph fusion techniques exist in the current literature, an analytical approach for analyzing the fundamentals of the graph fusion problem is lacking. We consider the setting where we are...

READ MORE

Showing Results

1-5 of 5