Automatic extraction of intelligent and useful information from data is one of the main goals in data science. Traditional approaches have focused on learning from structured features, i.e., information in a relational database. However, most of the data encountered in practice are unstructured (i.e., social media posts, forums, emails and web logs); they do not have a predefined schema or format. In this work, we examine unsupervised methods for processing unstructured text data, extracting relevant information, and transforming it into structured information that can then be leveraged in various applications such as graph analysis and matching entities across different platforms. Various efforts have been proposed to develop algorithms for processing unstructured text data. At a top level, text can be either summarized by document level features (i.e., language, topic, genre, etc.) or analyzed at a word or sub-word level. Text analytics can be unsupervised, semi-supervised, or supervised. In this work, we focus on word analysis and unsupervised methods. Unsupervised (or semi-supervised) methods require less human annotation and can easily fulfill the role of automatic analysis. For text analysis, we focus on methods for finding relevant words in the text. Specifically, we look at social media data and attempt to predict hashtags for users' posts. The resulting hashtags can be used for downstream processing such as graph analysis. Automatic hashtag annotation is closely related to automatic tag extraction and keyword extraction. Techniques for hashtags extraction include topic analysis, supervised classifiers, machine translation methods, and collaborative filtering. Methods for keyword extraction include graph-based and topical analysis of text.