Publications

Refine Results

(Filters Applied) Clear All

Application of complex split-activation feedforward networks to beamforming

Published in:
55th Asilomar Conf. on Signals, Systems and Computers, ACSSC, 31 October - 3 November 2021.

Summary

In increasingly congested RF environments and for jamming at closer ranges, amplifiers may introduce nonlinearities that linear adaptive beamforming techniques can't mitigate. Machine learning architectures are intended to solve such nonlinear least squares problems, but much of the current work and available software is limited to signals represented as real sequences. In this paper, neural networks using complex numbers to represent the complex baseband RF signals are considered. A complex backpropagation approach that calculates gradients and a Jacobian, allows for fast optimization of the neural networks. Through simulations, it is shown that complex neural networks require less training samples than their real counterparts and may generalize better in dynamic environments.
READ LESS

Summary

In increasingly congested RF environments and for jamming at closer ranges, amplifiers may introduce nonlinearities that linear adaptive beamforming techniques can't mitigate. Machine learning architectures are intended to solve such nonlinear least squares problems, but much of the current work and available software is limited to signals represented as real...

READ MORE

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data: proof of concept in non-human primates

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices. Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device. Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures – a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation – a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001. Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host’s immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.
READ LESS

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First...

READ MORE

Development of a field artifical intelligence triage tool: Confidence in the prediction of shock, transfusion, and definitive surgical therapy in patients with truncal gunshot wounds

Summary

BACKGROUND: In-field triage tools for trauma patients are limited by availability of information, linear risk classification, and a lack of confidence reporting. We therefore set out to develop and test a machine learning algorithm that can overcome these limitations by accurately and confidently making predictions to support in-field triage in the first hours after traumatic injury. METHODS: Using an American College of Surgeons Trauma Quality Improvement Program-derived database of truncal and junctional gunshot wound (GSW) patients (aged 1~0 years), we trained an information-aware Dirichlet deep neural network (field artificial intelligence triage). Using supervised training, field artificial intelligence triage was trained to predict shock and the need for major hemorrhage control procedures or early massive transfusion (MT) using GSW anatomical locations, vital signs, and patient information available in the field. In parallel, a confidence model was developed to predict the true-dass probability ( scale of 0-1 ), indicating the likelihood that the prediction made was correct, based on the values and interconnectivity of input variables.
READ LESS

Summary

BACKGROUND: In-field triage tools for trauma patients are limited by availability of information, linear risk classification, and a lack of confidence reporting. We therefore set out to develop and test a machine learning algorithm that can overcome these limitations by accurately and confidently making predictions to support in-field triage in...

READ MORE

Health-informed policy gradients for multi-agent reinforcement learning

Summary

This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual agents to the global reward. The health-informed credit assignment is then extended to a multi-agent variant of the proximal policy optimization algorithm and demonstrated on simple particle environments that have elements of system health, risk-taking, semi-expendable agents, and partial observability. We show significant improvement in learning performance compared to policy gradient methods that do not perform multi-agent credit assignment.
READ LESS

Summary

This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual agents to the global reward. The health-informed credit assignment is then...

READ MORE

Multimodal representation learning via maximization of local mutual information [e-print]

Published in:
Intl. Conf. on Medical Image Computing and Computer Assisted Intervention, MICCAI, 27 September-1 October 2021.

Summary

We propose and demonstrate a representation learning approach by maximizing the mutual information between local features of images and text. The goal of this approach is to learn useful image representations by taking advantage of the rich information contained in the free text that describes the findings in the image. Our method learns image and text encoders by encouraging the resulting representations to exhibit high local mutual information. We make use of recent advances in mutual information estimation with neural network discriminators. We argue that, typically, the sum of local mutual information is a lower bound on the global mutual information. Our experimental results in the downstream image classification tasks demonstrate the advantages of using local features for image-text representation learning.
READ LESS

Summary

We propose and demonstrate a representation learning approach by maximizing the mutual information between local features of images and text. The goal of this approach is to learn useful image representations by taking advantage of the rich information contained in the free text that describes the findings in the image...

READ MORE

Learning emergent discrete message communication for cooperative reinforcement learning

Published in:
37th Conf. on Uncertainty in Artificial Intelligence, UAI 2021, early access, 26-30 July 2021.

Summary

Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretability. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase the interpretability for human designers and other agents. This paper proposes a method to generate discrete messages analogous to human languages, and achieve communication by a broadcast-and-listen mechanism based on self-attention. We show that discrete message communication has performance comparable to continuous message communication but with much a much smaller vocabulary size. Furthermore, we propose an approach that allows humans to interactively send discrete messages to agents.
READ LESS

Summary

Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretability. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase...

READ MORE

Beyond expertise and roles: a framework to characterize the stakeholders of interpretable machine learning and their needs

Published in:
Proc. Conf. on Human Factors in Computing Systems, 8-13 May 2021, article no. 74.

Summary

To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability stakeholders in favor of a more granular framework that decouples stakeholders' knowledge from their interpretability needs. We characterize stakeholders by their formal, instrumental, and personal knowledge and how it manifests in the contexts of machine learning, the data domain, and the general milieu. We additionally distill a hierarchical typology of stakeholder needs that distinguishes higher-level domain goals from lower-level interpretability tasks. In assessing the descriptive, evaluative, and generative powers of our framework, we find our more nuanced treatment of stakeholders reveals gaps and opportunities in the interpretability literature, adds precision to the design and comparison of user studies, and facilitates a more reflexive approach to conducting this research.
READ LESS

Summary

To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability stakeholders in favor of a more granular framework that decouples...

READ MORE

Ultrasound diagnosis of COVID-19: robustness and explainability

Published in:
arXiv:2012.01145v1 [eess.IV]

Summary

Diagnosis of COVID-19 at point of care is vital to the containment of the global pandemic. Point of care ultrasound (POCUS) provides rapid imagery of lungs to detect COVID-19 in patients in a repeatable and cost effective way. Previous work has used public datasets of POCUS videos to train an AI model for diagnosis that obtains high sensitivity. Due to the high stakes application we propose the use of robust and explainable techniques. We demonstrate experimentally that robust models have more stable predictions and offer improved interpretability. A framework of contrastive explanations based on adversarial perturbations is used to explain model predictions that aligns with human visual perception.
READ LESS

Summary

Diagnosis of COVID-19 at point of care is vital to the containment of the global pandemic. Point of care ultrasound (POCUS) provides rapid imagery of lungs to detect COVID-19 in patients in a repeatable and cost effective way. Previous work has used public datasets of POCUS videos to train an...

READ MORE

Ultrasound and artificial intelligence

Published in:
Chapter 8 in Machine Learning in Cardiovascular Medicine, 2020, pp. 177-210.

Summary

Compared to other major medical imaging modalities such as X-ray, computed tomography (CT), and magnetic resonance imaging, medical ultrasound (US) has unique attributes that make it the preferred modality for many clinical applications. In particular, US is nonionizing, portable, and provides real-time imaging, with adequate spatial and depth resolution to visualize tissue dynamics. The ability to measure Doppler information is also important, particularly for measuring blood flows. The small size of US transducers is a key attribute for intravascular applications. In addition, accessibility has been increased with the use of portable US, which continues to move toward a smaller footprint and lower cost. Nowadays, some US probes can even be directly connected to a phone or tablet. On the other hand, US also has unique challenges, particularly in that image quality is highly dependent on the operator’s skill in acquiring images based on the proper position, orientation, and probe pressure. Additional challenges that further require operator skill include the presence of noise, artifacts, limited field of view, difficulty in imaging structures behind bone and air, and device variability across manufacturers. Sonographers become highly proficient through extensive training and long experience, but high intra- and interobserver variability remains. This skill dependence has limited the wider use of US by healthcare providers who are not US imaging specialists. Recent advances in machine learning (ML) have been increasingly applied to medical US (Brattain, Telfer, Dhyani, Grajo, & Samir, 2018), with a goal of reducing intra- and interobserver variability as well as interpretation time. As progress toward these goals is made, US use by nonspecialists is expected to proliferate, including nurses at the bedside or medics in the field. The acceleration in ML applications for medical US can be seen from the increasing number of publications (Fig. 8.1) and Food and Drug Administration (FDA) approvals (Table 8.1) in the past few years. Fig. 8.1 shows that cardiovascular applications (spanning the heart, brain and vessels) have received the most attention, compared to other organs. Table 8.1 shows that pace of US FDA-cleared artificial intelligence (AI) products that combine AI and ultrasound is accelerating. Of note, many of the products have been approved over the last couple of years. Companies such as Butterfly Network (Guilford, CT) have also demonstrated AI-driven applications for portable ultrasound and more FDA clearances are expected to be published. The goals of this chapter are to highlight the recent progress, as well as the current challenges and future opportunities. Specifically, this chapter addresses topics such as the following: (1) what is the current state of machine learning for medical US application, both in research and commercially; (2) what applications are receiving the most attention and have performance improvements been quantified; (3) how do ML solutions fit in an overall workflow; and (4) what open-source datasets are available for the broader community to contribute to progress in this field. The focus is on cardiovascular applications (Section Cardiovascular/echocardiography), but common themes and differences for other applications for medical US are also summarized (Section Breast, liver, and thyroid ultrasound). A discussion is offered in Discussion and outlook section.
READ LESS

Summary

Compared to other major medical imaging modalities such as X-ray, computed tomography (CT), and magnetic resonance imaging, medical ultrasound (US) has unique attributes that make it the preferred modality for many clinical applications. In particular, US is nonionizing, portable, and provides real-time imaging, with adequate spatial and depth resolution to...

READ MORE

Failure prediction by confidence estimation of uncertainty-aware Dirichlet networks

Published in:
https://arxiv.org/abs/2010.09865

Summary

Reliably assessing model confidence in deep learning and predicting errors likely to be made are key elements in providing safety for model deployment, in particular for applications with dire consequences. In this paper, it is first shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence of correct and incorrect predictions in the true class probability (TCP) metric. Second, as the true class is unknown at test time, a new criterion is proposed for learning the true class probability by matching prediction confidence scores while taking imbalance and TCP constraints into account for correct predictions and failures. Experimental results show our method improves upon the maximum class probability (MCP) baseline and predicted TCP for standard networks on several image classification tasks with various network architectures.
READ LESS

Summary

Reliably assessing model confidence in deep learning and predicting errors likely to be made are key elements in providing safety for model deployment, in particular for applications with dire consequences. In this paper, it is first shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence...

READ MORE