Publications

Refine Results

(Filters Applied) Clear All

Next-generation airborne collision avoidance system

Published in:
Lincoln Laboratory Journal, Vol. 19, No. 1, 2012, pp. 17-33.

Summary

In response to a series of midair collisions involving commercial airliners, Lincoln Laboratory was directed by the Federal Aviation Administration in the 1970s to participate in the development of an onboard collision avoidance system. In its current manifestation, the Traffic Alert and Collision Avoidance System is mandated worldwide on all large aircraft and has significantly improved the safety of air travel, but major changes to the airspace planned over the coming years will require substantial modification to the system. Recently, Lincoln Laboratory has been pioneering the development of a new approach to collision avoidance systems that completely rethinks how such systems are engineered, allowing the system to provide a higher degree of safety without interfering with normal, safe operations.
READ LESS

Summary

In response to a series of midair collisions involving commercial airliners, Lincoln Laboratory was directed by the Federal Aviation Administration in the 1970s to participate in the development of an onboard collision avoidance system. In its current manifestation, the Traffic Alert and Collision Avoidance System is mandated worldwide on all...

READ MORE

Hazard alerting based on probabilistic models

Published in:
J. Guidance, Control, Dynamics, Vol. 35, No. 2, March-April 2012, pp. 442-450.

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a threshold. Another way to develop such a system is to model the system as a Markov decision process and solve for the hazard experiments reveal that an expected utility approach performs better than threshold-based approaches when the dynamic stochasticity is high, where accounting for delays or changes in the alert becomes more important. however, for certain system parameters and operating environments, a threshold-based approach may provide comparable performance.
READ LESS

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a...

READ MORE

A new approach for designing safer collision avoidance systems

Published in:
Air Traffic Control Q., Vol. 20, No. 1, January 2012, pp. 27-45.

Summary

The Traffic Alert and Collision Avoidance System significantly reduces the risk of mid-air collision and is mandated worldwide on transport aircraft. Engineering the avoidance logic was costly and spanned decades. The development followed an iterative process where the logic was specified using pseudocode, evaluated in simulation, and revised based on performance against a set of metrics. Modifying the logic is difficult because the pseudocode contains many heuristic rules that interact in complex ways. With the introduction of next-generation air traffic control procedures and surveillance systems, the logic will require significant revision to prevent unnecessary alerts. Recent work has explored an approach for designing collision avoidance systems that will shorten the development cycle, improve maintainability, and enhance safety with fewer false alerts. The approach involves computationally deriving optimized logic from encounter models and performance metrics. This paper outlines the approach and discusses the anticipated impact on development, safety, and operation.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System significantly reduces the risk of mid-air collision and is mandated worldwide on transport aircraft. Engineering the avoidance logic was costly and spanned decades. The development followed an iterative process where the logic was specified using pseudocode, evaluated in simulation, and revised based on...

READ MORE

Decomposition methods for optimized collision avoidance with multiple threats

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 1D2.

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others. Recent efforts to develop robust collision avoidance systems for single-threat encounters have involved modeling the problem as a Markov decision process and applying dynamic programming to solve for the optimal avoidance strategy. Because this methodology does not scale well to multiple threats, this paper evaluates a variety of decomposition methods that leverage the optimal avoidance strategy for single-threat encounters.
READ LESS

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others...

READ MORE

Collision avoidance for general aviation

Published in:
30th AIAA/IEEE Digital Avionics Systems Conf., 16-20 October 2011.

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several times per year. There is interest in low-cost collision avoidance systems for GA aircraft to reduce collision risk with other GA aircraft as well as with TCAS-equipped aircraft. Since TCAS was designed for large aircraft that can achieve greater vertical rates, the assumptions made by the system and the associated advisories are not always appropriate for GA aircraft. Modifying the TCAS logic to accommodate GA aircraft is far from straightforward. Even minor changes to TCAS to correct operational issues are difficult to implement due to the interaction of the complex rules defining the logic. Recent work has explored an alternative to the TCAS logic based on optimization with respect to a probabilistic model of aircraft behavior. The model encodes performance constraints of GA aircraft, and a computational technique called dynamic programming allows the optimal collision avoidance strategy to be computed efficiently. Prior work has focused on systems that meet the performance assumptions of the existing TCAS logic. However, these assumptions are not always appropriate for GA aircraft. This paper will present simulation results comparing the existing logic to logic that has been optimized to operate onboard GA aircraft. If both aircraft are equipped with collision avoidance logic, it is important that the advisories be coordinated to prevent both aircraft from climbing or descending. The TCAS logic has a built-in coordination mechanism with which a GA system must maintain compatibility. Several coordination strategies, both with the optimized logic and the current logic, are evaluated in simulation.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several...

READ MORE

Position validation strategies using partially observable Markov decision processes

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 4A2.

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B providing erroneous data to the collision avoidance system, resulting in a potential collision. Hence, there is a need to use beacon interrogation to periodically validate ADS-B position reports. Various threshold-based validation strategies based on proximity and closure rate have been suggested to reduce channel congestion while maintaining the reliability of the collision avoidance system. This paper shows how to model the problem of deciding when to validate ADS-B reports as a partially observable Markov decision process, and it explains how to solve for the optimal validation strategy. The effectiveness of this approach is demonstrated in simulation.
READ LESS

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B...

READ MORE

Analysis of open-loop and closed-loop planning for aircraft collision avoidance

Published in:
2011 14th Int. IEEE Conf. on Intelligent Transportation Systems, 5-7 October 2011, pp. 212-217.

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper explores trade-offs that exist between the two strategies as they apply to aircraft collision avoidance. It demonstrates some of the performance gains that con be realized by adopting a closed-loop planning strategy.
READ LESS

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper...

READ MORE

Hazard alerting based on probabilistic models

Published in:
AIAA Modeling and Simulation Technologies Conf., 8-11 August 2011.

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a threshold. Another way to develop such a system is to model the system as a Markov decision process and solve for the hazard alerting strategy that maximizes expected utility. This paper analyzes and compares these two methods. The experiments reveal that an expected utility approach performs better than threshold-based approaches when the dynamic stochasticity is high, where accounting for delays or changes in the alert becomes more important. However, for certain system parameters and operating environments, a threshold-based approach may provide comparable performance.
READ LESS

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a...

READ MORE

Accounting for state uncertainty in collision avoidance

Published in:
J. Guidance, Control, and Dynamics, Vol. 34, No. 4, July-August 2011, pp. 951-960.

Summary

An important consideration in the development of aircraft collision avoidance systems is how to account for state uncertainty due to sensor limitations and noise. However, many collision avoidance systems simply use point estimates of the state instead of leveraging the full posterior state distribution. Recently, there has been work on applying decision-theoretic methods to collision avoidance, but the importance of accommodating state uncertainty has not yet been well studied. This paper presents a computationally efficient framework for accounting for state uncertainty based on dynamic programming. Examination of characteristic encounters and Monte Carlo simulations demonstrates that properly handling state uncertainty rather than simply using point estimates can significantly enhance safety and improve robustness to sensor error.
READ LESS

Summary

An important consideration in the development of aircraft collision avoidance systems is how to account for state uncertainty due to sensor limitations and noise. However, many collision avoidance systems simply use point estimates of the state instead of leveraging the full posterior state distribution. Recently, there has been work on...

READ MORE

Collision avoidance system optimization with probabilistic pilot response models

Published in:
2011 American Control Conf., 29 June-1 July 2011, pp. 2765-2770.

Summary

All large transport aircraft are required to be equipped with a collision avoidance system that instructs pilots how to maneuver to avoid collision with other aircraft. Uncertainty in the compliance of pilots to advisories makes designing collision avoidance logic challenging. Prior work has investigated formulating the problem as a Markov decision process and solving for the optimal collision avoidance strategy using dynamic programming. The logic was optimized to a pilot response model in which the pilot responds deterministically to all alerts. Deviation from this model during flight can degrade safety. This paper extends the methodology to include probabilistic pilot response models that capture the variability in pilot behavior in order to enhance robustness.
READ LESS

Summary

All large transport aircraft are required to be equipped with a collision avoidance system that instructs pilots how to maneuver to avoid collision with other aircraft. Uncertainty in the compliance of pilots to advisories makes designing collision avoidance logic challenging. Prior work has investigated formulating the problem as a Markov...

READ MORE