Publications

Refine Results

(Filters Applied) Clear All

Vector antenna and maximum likelihood imaging for radio astronomy

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been devoted to highly capable low frequency ground-based interferometric arrays such as LOFAR, LWA, and MWA. Ground-based arrays, however, cannot observe astronomical sources below the ionospheric cut-off frequency of ~10 MHz, so the sky has not been mapped with high angular resolution below that frequency. The only space mission to observe the sky below the ionospheric cut-off was RAE-2, which achieved an angular resolution of ~60 degrees in 1973. This work presents alternative sensor and algorithm designs for mapping the sky both above and below the ionospheric cutoff. The use of a vector sensor, which measures the full electric and magnetic field vectors of incoming radiation, enables reasonable angular resolution (~5 degrees) from a compact sensor (~4 m) with a single phase center. A deployable version of the vector sensor has been developed to be compatible with the CubeSat form factor.
READ LESS

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been...

READ MORE

Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

Published in:
SPIE, Vol. 9492, Advanced Photon Counting Techniques IX, 28 May 2015.

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device?s space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.
READ LESS

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can...

READ MORE

Wideband antenna array for simultaneous transmit and receive (STAR) applications

Published in:
2014 IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 6-11 July 2014.
Topic:
R&D group:

Summary

A wideband antenna array for Simultaneous Transmit and Receive (STAR) applications is presented. The design is comprised of a ring array of TEM horns, and a monocone at the array's center. When the array is phased with the first order circular mode, it is isolated from the monocone. Thus, the array may be used in reception while the monocone is used in transmission, or vice versa. The array and monocone both produce quasi-omnidirectional patterns in the azimuthal planes. Simulations suggest that the design operates across an 8.4 : 1 bandwidth. This wide bandwidth is possible through the use of a novel capacitive feed employed in the TEM horn array.
READ LESS

Summary

A wideband antenna array for Simultaneous Transmit and Receive (STAR) applications is presented. The design is comprised of a ring array of TEM horns, and a monocone at the array's center. When the array is phased with the first order circular mode, it is isolated from the monocone. Thus, the...

READ MORE

TCAS multiple threat encounter analysis

Published in:
MIT Lincoln Laboratory Report ATC-359

Summary

The recent development of high-fidelity U.S. airspace encounter models at Lincoln Laboratory has motivated a simulation study of the Traffic Alert and Collision Avoidance System (TCAS) multiple threat logic. We observed from archived radar data that while rarer than single-threat encounters, multiple threat encounters occur more frequently than originally expected. The multithreat logic has not been analyzed in the past using encounter models. To generate multi-threat encounters, this report extends the statistical techniques used to develop pairwise correlated encounters. We generated and simulated a large number of multi-threat encounters using the TCAS logic implemented in Lincoln Laboratory's Collision Avoidance System Safety Assessment Tool. Near mid-air collision (NMAC) count indicates how often close encounters are resolved, unresolved, or induced by TCAS. Change in vertical miss distance shows the effect of the additional threat on the vertical separation between the first two aircraft. Risk ratio measures how the probability of an NMAC changes when an aircraft is equipped with TCAS versus being unequipped. Study results indicate that in multi-threat encounters, the TCAS logic results in a more than twofold increase in unresolved NMACs and approximately five times more induced NMACs than one-on-one encounters. TCAS provides a safety benefit in multi-threat encounters by issuing resolution advisories that result in increased vertical separation between the equipped aircraft and the first intruder.
READ LESS

Summary

The recent development of high-fidelity U.S. airspace encounter models at Lincoln Laboratory has motivated a simulation study of the Traffic Alert and Collision Avoidance System (TCAS) multiple threat logic. We observed from archived radar data that while rarer than single-threat encounters, multiple threat encounters occur more frequently than originally expected...

READ MORE

Safety analysis of upgrading to TCAS Version 7.1 using the 2008 U.S. Correlated Encounter Model

Published in:
MIT Lincoln Laboratory Report ATC-349

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS algorithm, e.g., when TCAS reverses the sense of an RA from climb to descend. Typically, reversals occur to resolve deteriorating conditions during and encounter. V7.0 contained reversal logic based on certain assumptions and engineering judgment, but operational experience obtained since deployment has compelled a re-evaluation in areas of that logic, specifically having to do with late reversals. The second change proposal, CP-115, rectifies observed confusion surrounding the aural annunication AVSA during an RA by replacing it with the annunciation LOLO, and changing the TCAS V7.0 display and logic to appropriately support the change. Collectively, the changes to teh TCAS logic in both CP-112E and CP115 are referred to as TCAS II V7.1. Included in this document is a safety study that consideres V7.1 as a whole, and also the first safety study that uses teh U.S. correlated encounter model developed by Lincoln Laboratory for testing TCAS. Also included is a discussion of simulation capabilites developed at Lincoln Laboratory for evaluating CP-115 and for future analysis of TCAS in high density areas. Our study indicates that mroe risk lies in remaining with the current version of TCAS over upgrading to V7.1, and that no negative impact on safety in high density airspace occurs as a result of CP-115.
READ LESS

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS...

READ MORE

Evaluation of TCAS II Version 7.1 using the FAA Fast-Time Encounter Generator model [volume 1]

Published in:
MIT Lincoln Laboratory Report ATC-346,I

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 7.1. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in the U.S. airspace. Version 7.1 was created to correct two potential safety problems in earlier versions. The first change focuses on the sense reversal logic. The second change focuses on avoiding "wrong way" responses to Vertical Speed Limit or "Adjust Vertical Speed, Adjust" RAs. Lincoln Laboratory evaluated the logic by examining more than eight million simulated pairwise encounters, derived from actual tracks recorded in U.S. airspace. The main goals of the evaluation were: (1) to study the performance of the revised sense reversal logic for encounters where one pilot ignores the TCAS advisory; (2) to determine if the revised sense reversal logic has an adverse impact on encounters where both pilots follow the TCAS advisories; (3) to determine if the change from "Adjust Vertical Speed, Adjust" advisories to "Level Off, Level Off" advisories provides a safety benefit for TCAS. Three sets of encounters were examined in order to fulfill these goals: encounters where both aircraft are TCAS-equipped and both pilots follow the advisories; encounters where both aircraft are TCAS-equipped and one pilot does not follow the advisory; and encounters where only one aircraft is TCAS-equipped. A detailed analysis followed by a summary is provided for each set of encounters. An overall summary is given at the end of the report.
READ LESS

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 7.1. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in...

READ MORE

Evaluation of TCAS II Version 7.1 using the FAA Fast-Time Encounter Generator model : appendix [volume 2]

Published in:
MIT Lincoln Laboratory Report ATC-346,II

Summary

Appendix to Project Report ATC-346, Evaluation of TCAS II Version 7.1 Using the Fast-Time Encounter Generator Model, Volume 1.
READ LESS

Summary

Appendix to Project Report ATC-346, Evaluation of TCAS II Version 7.1 Using the Fast-Time Encounter Generator Model, Volume 1.

READ MORE

Correlated encounter model for cooperative aircraft in the National Airspace System, version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-344

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States, including more than 120 sensors and collected over a period of nine months, was used to build the statistical relationships in the model to ensure that the encounters that are generated are representative of actual events in the airspace.
READ LESS

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States...

READ MORE

High-fidelity quantum operations on superconducting qubits in the presence of noise

Published in:
Phys. Rev. Lett., Vol. 101, No. 7, 15 August 2008, 070501.

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing arbitrary noise-induced dephasing and decay, and demonstrate in this system a set of universal gate operations with O(10^-5) error probabilities in the presence of experimentally measured levels of 1=f noise. We then add relaxation and quantify the decay times required to maintain this error level.
READ LESS

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing...

READ MORE

The Aircraft Reply and Interference Environment Simulator (ARIES) volume 1: principles of operation

Author:
Published in:
MIT Lincoln Laboratory Report ATC-87,I

Summary

The Aircraft Reply and Interference Environment Simulator (ARIES) makes possible the performance assessment of a Discrete Address Beacon System (DABS) sensor under its specified maximum aircraft load. To do this ARIES operates upon a taped traffic model to generate simulated aircraft replies and fruit, feeding them to the sensor at RF. Support documentation for ARIES, of which this is the first volume, consists of: Volume 1: Principles of Operation Volume 2: Appendices to the Principles of Operation Volume 3: Programmer's Manual The Principles of Operation details the operation of ARIES hardware and software. Descriptive information, supported by block diagrams, simplified schematic diagrams and flow diagrams, is provided sufficient to permit a thorough understanding of ARIES operation.
READ LESS

Summary

The Aircraft Reply and Interference Environment Simulator (ARIES) makes possible the performance assessment of a Discrete Address Beacon System (DABS) sensor under its specified maximum aircraft load. To do this ARIES operates upon a taped traffic model to generate simulated aircraft replies and fruit, feeding them to the sensor at...

READ MORE

Showing Results

1-10 of 13