Publications

Refine Results

(Filters Applied) Clear All

3D printed conformal array antenna: simulations and measurements

Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at L band are in good agreement.
READ LESS

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at...

READ MORE

Design and analysis of an axisymmetric phased array fed Gregorian reflector system for limited scanning

Author:
Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.
Topic:
R&D group:

Summary

An axisymmetric phased array fed confocal parabolic Gregorian reflector system is explored. The antenna utilizes a planar phased array located near the vertex of the primary reflector. Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for limited scanning. Simulations of the scanning performance of a dual reflector system with a 2 meter diameter primary reflector operating at Ku band are presented.
READ LESS

Summary

An axisymmetric phased array fed confocal parabolic Gregorian reflector system is explored. The antenna utilizes a planar phased array located near the vertex of the primary reflector. Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for limited scanning...

READ MORE

HF vector sensor for radio astronomy: ground testing results

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution and sensitivity to be scientifically useful. Multi-spacecraft constellations scale quickly in cost and complexity as the number of spacecraft increases, so minimizing the number of required spacecraft for an interferometric array (while maintaining performance) is critical for feasibility. We present the HF (High Frequency, 3 to 30 MHz) Vector Sensor as a high performance spacecraft instrument in a future space-based interferometric array. The HF Vector Sensor is composed of three orthogonal dipoles and three orthogonal loop antennas with a common phase center. These six elements fully measure the E-M field of incoming radiation. We present the design of two prototype HF Vector Sensors, ground-based data collection at frequencies above the ionospheric cut-off, and imaging results using several different algorithms.
READ LESS

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution...

READ MORE

Vector antenna and maximum likelihood imaging for radio astronomy

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been devoted to highly capable low frequency ground-based interferometric arrays such as LOFAR, LWA, and MWA. Ground-based arrays, however, cannot observe astronomical sources below the ionospheric cut-off frequency of ~10 MHz, so the sky has not been mapped with high angular resolution below that frequency. The only space mission to observe the sky below the ionospheric cut-off was RAE-2, which achieved an angular resolution of ~60 degrees in 1973. This work presents alternative sensor and algorithm designs for mapping the sky both above and below the ionospheric cutoff. The use of a vector sensor, which measures the full electric and magnetic field vectors of incoming radiation, enables reasonable angular resolution (~5 degrees) from a compact sensor (~4 m) with a single phase center. A deployable version of the vector sensor has been developed to be compatible with the CubeSat form factor.
READ LESS

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been...

READ MORE

Ultrawideband time-delay steered UHF dipole linear array antenna

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of the prototype antenna in an anechoic chamber demonstrate the antenna's reflection coefficient and radiation gain pattern performance.
READ LESS

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to...

READ MORE

Ultrawideband cavity-backed resistively loaded planar dipole array for ground penetrating radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance of the UWB array is quantified by moment method simulations of the electromagnetic field penetration into lossy soil. Integration of the UWB array onto vehicle is discussed.
READ LESS

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance...

READ MORE

Ring array antenna with optimized beamformer for simultaneous transmit and receive

Published in:
2012 IEEE Antennas and Propagation Society International Symp. and USNC/URSI National Radio Sci. Mtg., 8-14 July 2012.

Summary

In order to avoid self-interference, Simultaneous Transmit And Receive (STAR) systems require low mutual coupling between their respective transmit and receive antennas. This paper discusses the development of an 8-element transmit ring array antenna on a circular ground plane with a raised receive element. When combined with a beamformer that supplies linear progressive phase shifts to the array with opposing elements phased 180-degrees apart, the receive and transmit antennas are measured to exhibit 55 dB of isolation and omni-directional patterns in the 2.4 to 2.5 GHz band.
READ LESS

Summary

In order to avoid self-interference, Simultaneous Transmit And Receive (STAR) systems require low mutual coupling between their respective transmit and receive antennas. This paper discusses the development of an 8-element transmit ring array antenna on a circular ground plane with a raised receive element. When combined with a beamformer that...

READ MORE

The MIT IAP radar course: build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging

Published in:
Proc. of the 2012 IEEE Radar Conf., 7-11 May 2012.

Summary

MIT Lincoln Laboratory sponsored a radar short course at MIT campus during the January 2011 Independent Activities Period (IAP). The objective of this course was to generate student interest in applied electromagnetics, antennas, radio frequency (RF) electronics, analog circuits, and signal processing by building a short-range radar sensor and using it in a series of field tests. Lectures on the fundamentals of radar, modular RF design, antennas, pulse compression and synthetic aperture radar (SAR) imaging were presented. Teams of three students built a radar system from a kit. This kit was developed by the authors and uses a frequency modulated continuous wave (FMCW) architecture. To save costs, empty metal coffee cans are used for antennas, components are mounted on a wood block, the system uses only six coaxial microwave parts, analog circuitry on a solderless breadboard, and runs on eight AA batteries. Analog data is acquired by the audio input port on a laptop computer. The total cost of each kit was $360 which made this radar technology accessible to students. Of the nine student groups, all succeeded in building their radar, acquiring Doppler vs. time and range vs. time plots, seven succeeded in acquiring SAR imagery, and some groups improved the radar system. By presenting these difficult topics at a high level while at the same time making a radar kit and performing field experiments, students became self motivated to explore these topics and much interest in radar design was generated.
READ LESS

Summary

MIT Lincoln Laboratory sponsored a radar short course at MIT campus during the January 2011 Independent Activities Period (IAP). The objective of this course was to generate student interest in applied electromagnetics, antennas, radio frequency (RF) electronics, analog circuits, and signal processing by building a short-range radar sensor and using...

READ MORE

Low-profile dual-polarized UHF array antenna

Published in:
2010 IEEE Int. Symp. on Phased Array Systems & Technology, 12 October 2010, p. 599-602.

Summary

A low-profile dual-polarized UHF array antenna has been developed for wide field-of-view dual sector coverage in the 250 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a pair of parasitically-tuned dipole arrays for horizontal polarization and a pair of parasitically-tuned monopole arrays for vertical polarization, and both arrays are mounted on a common ground plane. The thickness of the antenna is 18.2 cm. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of the dual-polarized prototype in an anechoic chamber demonstrate the antenna?s return loss and dual-polarized radiation gain pattern performance.
READ LESS

Summary

A low-profile dual-polarized UHF array antenna has been developed for wide field-of-view dual sector coverage in the 250 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a pair of parasitically-tuned dipole arrays for horizontal polarization and a pair of parasitically-tuned monopole arrays for vertical polarization...

READ MORE

Ultrawideband VHF/UHF dipole array antenna

Published in:
2010 IEEE Int. Symp. on Phased Array Systems, 12 October 2010, pp. 79-82.

Summary

A linearly-polarized ultrawideband dipole array antenna has been developed for coverage in the VHF/UHF frequency range for communications or radar applications. The antenna design utilizes a horizontally polarized array of thick tubular dipole elements above a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of a 24-element ultrawideband dipole array prototype in an anechoic chamber demonstrate the antenna's return loss and gain pattern performance over a wide bandwidth.
READ LESS

Summary

A linearly-polarized ultrawideband dipole array antenna has been developed for coverage in the VHF/UHF frequency range for communications or radar applications. The antenna design utilizes a horizontally polarized array of thick tubular dipole elements above a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters...

READ MORE

Showing Results

1-10 of 14