Publications

Refine Results

(Filters Applied) Clear All

Effect of a wet spherical radome on the reflected power for an S-band planar phased array radar antenna

Published in:
2021 Antenna Measurement Techniques Association Symp., AMTA, 24-29 October 2021.

Summary

An active S-band dual-polarized multifunction phased array radar (MPAR), the Advanced Technology Demonstrator (ATD), has recently been developed for weather sensing and aircraft surveillance. The ATD is an active electronically scanned array (AESA) with 4864 transmit/receive (T/R) modules and was installed in a spherical radome. Simulations and a novel phased array measurement technique have been explored to assess the impact of high reflectivity from a wet radome during rain that can potentially induce voltages exceeding the transmit amplifier breakdown voltage. The measurement technique uses array elements radiating one at a time to illuminate the radome, and uses superposition to quantify the received signal power in a reference antenna on the face of the array. It is shown that when the radome surface is wet and highly reflective, certain electronic steering angles sum to a large reflected signal focused on the array face. This measurement technique can be used prior to high-power phased array radar operation to monitor the magnitude of reflections and help avoid element transmit amplifier failures.
READ LESS

Summary

An active S-band dual-polarized multifunction phased array radar (MPAR), the Advanced Technology Demonstrator (ATD), has recently been developed for weather sensing and aircraft surveillance. The ATD is an active electronically scanned array (AESA) with 4864 transmit/receive (T/R) modules and was installed in a spherical radome. Simulations and a novel phased...

READ MORE

Towards the next generation operational meteorological radar

Summary

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.
READ LESS

Summary

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these...

READ MORE

Command and control for multifunction phased array radar

Published in:
IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 10, October 2017, pp. 5899-5912.

Summary

We discuss the challenge of managing the Multifunction Phased Array Radar (MPAR) timeline to satisfy the requirements of its multiple missions, with a particular focus on weather surveillance. This command and control (C2) function partitions the available scan time among these missions, exploits opportunities to service multiple missions simultaneously, and utilizes techniques for increasing scan rate where feasible. After reviewing the candidate MPAR architectures and relevant previous research, we describe a specific C2 framework that is consistent with a demonstrated active array architecture using overlapped subarrays to realize multiple, concurrent receive beams. Analysis of recently articulated requirements for near-airport and national-scale aircraft surveillance indicates that with this architecture, 40–60% of the MPAR scan timeline would be available for the high-fidelity weather observations currently provided by the Weather Service Radar (WSR-88D) network. We show that an appropriate use of subarray generated concurrent receive beams, in concert with previously documented, complementary techniques to increase the weather scan rate, could enable MPAR to perform full weather volume scans at a rate of 1 per minute. Published observing system simulation experiments, human-in-the-loop studies and radar-data assimilation experiments indicate that high-quality weather radar observations at this rate may significantly improve the lead time and reliability of severe weather warnings relative to current observation capabilities.
READ LESS

Summary

We discuss the challenge of managing the Multifunction Phased Array Radar (MPAR) timeline to satisfy the requirements of its multiple missions, with a particular focus on weather surveillance. This command and control (C2) function partitions the available scan time among these missions, exploits opportunities to service multiple missions simultaneously, and...

READ MORE

Showing Results

1-3 of 3