Publications

Refine Results

(Filters Applied) Clear All

Towards the next generation operational meteorological radar

Summary

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.
READ LESS

Summary

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these...

READ MORE

Geospatial QPE accuracy dependence on weather radar network configurations

Published in:
J. Appl. Meteor. Climatol., Vol. 59, No. 1, 2020, pp. 1773-92.

Summary

The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on network density, antenna aperture, and polarimetric bias. Thousands of cases from the warm-season months of May–August 2015–2017 are processed using both the specific attenuation [R(A)] and reflectivity-differential reflectivity [R(Z,ZDR)] QPE methods and are compared against Automated Surface Observing System (ASOS) rain gauge data. QPE errors are quantified based on beam height, cross-radial resolution, added polarimetric bias, and observed rainfall rate. The collected data are used to construct a support vector machine regression model that is applied to the current WSR-88D network for holistic error quantification. An analysis of the effects of polarimetric bias on flash-flood rainfall rates is presented. Rainfall rates based on 2-year/1-hr return rates are used for a CONUS-wide analysis of QPE errors in extreme rainfall situations. These errors are then re-quantified using previously proposed network design scenarios with additional radars that provide enhanced estimate capabilities. Finally, a gap-filling scenario utilizing the QPE error model, flash-flood rainfall rates, population density, and potential additional WSR-88D sites is presented, exposing the highest-benefit coverage holes in augmenting the WSR-88D network (or a future network) relative to QPE performance.
READ LESS

Summary

The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on...

READ MORE

Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction

Author:
Published in:
Wea. Climate Soc., Vol. 12, No. 4, October 2020, pp. 789-804.

Summary

An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr^-1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr^-1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr^-1 for the present-day radars and a remaining radar-based benefit pool of $778M yr^-1.
READ LESS

Summary

An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic...

READ MORE

The 2017 Buffalo Area Icing and Radar Study (BAIRS II)

Published in:
MIT Lincoln Laboratory Report ATC-447

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation Administration (FAA). It is a follow-up to the similarly sponsored partnership of the original BAIRS conducted in the winter of 2013. The original BAIRS provided in situ verification and validation of icing and hydrometeors, respectively, within the radar domain in support of a hydrometeor-classification-based automated icing hazard algorithm. The BAIRS II motivation was to: --Collect additional in situ verification and validation data, --Probe further dual polarimetric radar features associated with icing hazard, --Provide foundations for additions to the icing hazard algorithm beyond hydrometeor classifications, and --Further characterize observable microphysical conditions in terms of S-band dual polarimetric radar data. With BAIRS II, the dual polarimetric capability is provided by multiple Next Generation Weather Radar (NEXRAD) S-band radars in New York State, and the verification of the icing hazard with microphysical and hydrometeor characterizations is provided by NRC's Convair-580 instrumented research plane during five icing missions covering about 21 mission hours. The ability to reliably interpret the NEXRAD dual polarization radar-sensed thermodynamic phase of the hydrometeors (solid, liquid, mix) in the context of cloud microphysics and precipitation physics makes it possible to assess the icing hazard potential to aviation. The challenges faced are the undetectable nature of supercooled cloud droplets (for Sband) and the isotropic nature of Supercooled Large Drops (SLD). The BAIRS II mission strategy pursued was to study and probe radar-identifiable, strongly anisotropic crystal targets (dendrites and needles) with which supercooled water (and water saturated conditions) are physically linked as a means for dual polarimetric detection of icing hazard. BAIRS II employed superior optical array probes along with state and microphysical instrumentation; and, using again NEXRAD-feature-guided flight paths, was able to make advances from the original BAIRS helpful to the icing algorithm development. The key findings that are given thorough treatment in this report are: --Identification of the radar-detectable "crystal sandwich" structure from two anisotropic crystal types stratified by in situ air temperature in association with varying levels of supercooled water --with layer thicknesses observed to 2 km, --over hundred-kilometer scales matched with the mesoscale surveillance of the NEXRAD radars, --Development and application of a multi-sensor cloud phase algorithm to distinguish between liquid phase, mixed phase, and glaciated (no icing) conditions for purposes of a "truth" database and improved analysis in BAIRS II, --Development of concatenated hydrometeor size distributions to examine the in situ growth of both liquid and solid hydrometeors over a broad size spectrum; used, in part, to demonstrate differences between maritime and continental conditions, and --The Icing Hazard Levels (IHL) algorithm’s verification in icing conditions is consistent with previous work and, new, is documented to perform well when indicating "glaciated" (no icing) conditions.
READ LESS

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...

READ MORE

Weather radar network benefit model for flash flood casualty reduction

Author:
Published in:
J. Appl. Meteor. Climatol., Vol. 59, No. 4, April 2020, pp. 589-604.

Summary

A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash-flood-based benefit of $316 million (M) yr-1. The remaining benefit pools are more modest ($13M yr-1 for coverage improvement and $69M yr-1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network's effectiveness in supporting the flash flood warning decision process.
READ LESS

Summary

A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination...

READ MORE

Monetized weather radar network benefits for tornado cost reduction

Author:
Published in:
MIT Lincoln Laboratory Report NOAA-35

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance, including increased lead times, are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In combination, then, it is clearly established that better and faster radar observations reduce tornado casualty rates. Furthermore, lower false alarm ratios save costs by cutting down on people's time lost when taking shelter.
READ LESS

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental...

READ MORE

A neural network approach for waveform generation and selection with multi-mission radar

Published in:
2019 IEEE Radar Conf., 22-26 April 2019.

Summary

Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident on the target. This capability can lead to significantly lower system design costs due to the possibility of sensitivity gains on the order of 3 dB or more compared with traditional, amplitude-modulated linear frequency modulated (LFM) waveforms. Generation of an optimal NLFM waveform, however, can be an arduous task, and may involve complex optimization and non-closed-form solutions. For a multimission or cognitive radar, which may utilize a wide combination of frequencies, pulse lengths, and amplitude modulations (among other factors), this could lead to an extremely large waveform table for selection. This paper takes a neural network approach to this problem by optimizing a set of over 100 waveforms spanning a wide space and using the results to interpolate the waveform possibilities to a higher resolution. A modified form of a previous NLFM method is combined with a four-hidden-layer neural network to show the integrated and peak range sidelobes of the generated waveforms across the model training space. The results are applicable to multi-mission and cognitive radars that need precise waveform specifications in rapid succession. The expected waveform generation times are addressed and quantified, and the potential applicability to multi-mission and cognitive radars is discussed.
READ LESS

Summary

Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident...

READ MORE

Weather radar network benefit model for tornadoes

Author:
Published in:
J. Appl. Meteor. Climatol., 22 April 2019, doi:10.1175/JAMC-D-18-0205.1.

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false alarm ratios save cost by cutting down on work and personal time lost while taking shelter. The model is run on the existing contiguous United States weather radar network as well as hypothetical future configurations. Results show that the current radars provide a tornado-based benefit of ~$490M per year. The remaining benefit pool is about $260M per year that is roughly split evenly between coverage- and rapid-scanning-related gaps.
READ LESS

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results...

READ MORE

Polarimetric observations of chaff using the WSR-88D network

Published in:
J. Appl. Meteor. Climatol., Vol. 57, No. 5, 1 May 2018, pp. 1063-1081.

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. The database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity (ZDR) in chaff and its dependence on height. Contrary to radar data observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion regarding the observed characteristics is presented, and hypotheses for the observed ZDR dynamics are put forth.
READ LESS

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...

READ MORE

Quantification of radar QPE performance based on SENSR network design possibilities

Published in:
2018 IEEE Radar Conf., RadarConf, 23-27 April 2018.

Summary

In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial use. As part of this goal, the participating agencies have developed preliminary performance requirements that not only assume minimum capabilities based on legacy radars, but also recognize the need for enhancements in future radar networks. The relatively low density of the legacy radar networks, especially the WSR-88D network, had led to the goal of enhancing low-altitude weather coverage. With multiple design metrics and network possibilities still available to the SENSR agencies, the benefits of low-altitude coverage must be assessed quantitatively. This study lays the groundwork for estimating Quantitative Precipitation Estimation (QPE) differences based on network density, array size, and polarimetric bias. These factors create a pareto front of cost-benefit for QPE in a new radar network, and these results will eventually be used to determine appropriate tradeoffs for SENSR requirements. Results of this study are presented in the form of two case examples that quantify errors based on polarimetric bias and elevation, along with a description of eventual application to a national network in upcoming expansion of the work.
READ LESS

Summary

In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial...

READ MORE

Showing Results

1-10 of 13