Publications
Towards the next generation operational meteorological radar
Summary
Summary
This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these...
Geospatial QPE accuracy dependence on weather radar network configurations
Summary
Summary
The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on...
Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction
Summary
Summary
An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic...
The 2017 Buffalo Area Icing and Radar Study (BAIRS II)
Summary
Summary
The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...
Weather radar network benefit model for flash flood casualty reduction
Summary
Summary
A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination...
Monetized weather radar network benefits for tornado cost reduction
Summary
Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental...
A neural network approach for waveform generation and selection with multi-mission radar
Summary
Summary
Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident...
Weather radar network benefit model for tornadoes
Summary
Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results...
Polarimetric observations of chaff using the WSR-88D network
Summary
Summary
Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...
Quantification of radar QPE performance based on SENSR network design possibilities
Summary
Summary
In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial...