Publications

Refine Results

(Filters Applied) Clear All

The 2017 Buffalo Area Icing and Radar Study (BAIRS II)

Published in:
MIT Lincoln Laboratory Report ATC-447

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation Administration (FAA). It is a follow-up to the similarly sponsored partnership of the original BAIRS conducted in the winter of 2013. The original BAIRS provided in situ verification and validation of icing and hydrometeors, respectively, within the radar domain in support of a hydrometeor-classification-based automated icing hazard algorithm. The BAIRS II motivation was to: --Collect additional in situ verification and validation data, --Probe further dual polarimetric radar features associated with icing hazard, --Provide foundations for additions to the icing hazard algorithm beyond hydrometeor classifications, and --Further characterize observable microphysical conditions in terms of S-band dual polarimetric radar data. With BAIRS II, the dual polarimetric capability is provided by multiple Next Generation Weather Radar (NEXRAD) S-band radars in New York State, and the verification of the icing hazard with microphysical and hydrometeor characterizations is provided by NRC's Convair-580 instrumented research plane during five icing missions covering about 21 mission hours. The ability to reliably interpret the NEXRAD dual polarization radar-sensed thermodynamic phase of the hydrometeors (solid, liquid, mix) in the context of cloud microphysics and precipitation physics makes it possible to assess the icing hazard potential to aviation. The challenges faced are the undetectable nature of supercooled cloud droplets (for Sband) and the isotropic nature of Supercooled Large Drops (SLD). The BAIRS II mission strategy pursued was to study and probe radar-identifiable, strongly anisotropic crystal targets (dendrites and needles) with which supercooled water (and water saturated conditions) are physically linked as a means for dual polarimetric detection of icing hazard. BAIRS II employed superior optical array probes along with state and microphysical instrumentation; and, using again NEXRAD-feature-guided flight paths, was able to make advances from the original BAIRS helpful to the icing algorithm development. The key findings that are given thorough treatment in this report are: --Identification of the radar-detectable "crystal sandwich" structure from two anisotropic crystal types stratified by in situ air temperature in association with varying levels of supercooled water --with layer thicknesses observed to 2 km, --over hundred-kilometer scales matched with the mesoscale surveillance of the NEXRAD radars, --Development and application of a multi-sensor cloud phase algorithm to distinguish between liquid phase, mixed phase, and glaciated (no icing) conditions for purposes of a "truth" database and improved analysis in BAIRS II, --Development of concatenated hydrometeor size distributions to examine the in situ growth of both liquid and solid hydrometeors over a broad size spectrum; used, in part, to demonstrate differences between maritime and continental conditions, and --The Icing Hazard Levels (IHL) algorithm’s verification in icing conditions is consistent with previous work and, new, is documented to perform well when indicating "glaciated" (no icing) conditions.
READ LESS

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...

READ MORE

Polarimetric observations of chaff using the WSR-88D network

Published in:
J. Appl. Meteor. Climatol., Vol. 57, No. 5, 1 May 2018, pp. 1063-1081.

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. The database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity (ZDR) in chaff and its dependence on height. Contrary to radar data observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion regarding the observed characteristics is presented, and hypotheses for the observed ZDR dynamics are put forth.
READ LESS

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...

READ MORE

Development of a new inanimate class for the WSR-88D hydrometeor classification algorithm

Published in:
38th Conf. on Radar Meteorology, 27 August-1 September 2017.

Summary

The current implementation of the Hydrometeor Classification Algorithm (HCA) on the WSR-88D network contains two non-hydrometeor-based classes: ground clutter/anomalous propagation and biologicals. A number of commonly observed non-hydrometeor-based phenomena do not fall into either of these two HCA categories, but often are misclassified as ground clutter, biologicals, unknown, or worse yet, weather hydrometeors. Some of these phenomena include chaff, sea clutter, combustion debris and smoke, and radio frequency interference. In order to address this discrepancy, a new class (nominally named "inanimate") is being developed that encompasses many of these targets. Using this class, a distinction between non-biological and biological non-hydrometeor targets can be made and potentially separated into sub-classes for more direct identification. A discussion regarding the fuzzy logic membership functions, optimization of membership weights, and class restrictions is presented, with a focus on observations of highly stochastic differential phase estimates in all of the aforementioned targets. Recent attempts to separate the results into sub-classes using a support vector machine are presented, and examples of each target type are detailed. Details concerning eventual implementation into the WSR-88D radar product generator are addressed.
READ LESS

Summary

The current implementation of the Hydrometeor Classification Algorithm (HCA) on the WSR-88D network contains two non-hydrometeor-based classes: ground clutter/anomalous propagation and biologicals. A number of commonly observed non-hydrometeor-based phenomena do not fall into either of these two HCA categories, but often are misclassified as ground clutter, biologicals, unknown, or worse...

READ MORE

WSR-88D chaff detection and characterization using an optimized hydrometeor classification algorithm

Published in:
18th Conf. on Aviation, Range, and Aerospace Meteorology, 23-26 January 2017.

Summary

Chaff presents multiple issues for aviation, air traffic controllers, and the FAA, including false weather identification and areas where flight paths may need to be altered. Chaff is a radar countermeasure commonly released from aircraft across the United States and is comprised of individual metallic strands designed to reflect certain wavelengths. Chaff returns tend to look similar to weather echoes in the reflectivity factor and radial velocity fields, and can appear as clutter, stratiform precipitation, or deep convection to the radar operator or radar algorithms. When polarimetric fields are taken into account, however, discrimination between weather and non-weather echoes has relatively high potential for success. In this work, the operational Hydrometeor Classification Algorithm (HCA) on the WSR-88D is modified to include a chaff class that can be used as input to a Chaff Detection Algorithm (CDA). This new class is designed using human-truthed chaff datasets for the collection and quantification of variable distributions, and the collected chaff cases are leveraged in the tuning of algorithm weights through the use of a metaheuristic optimization. A final CDA uses various image processing techniques to deliver a filtered output. A discussion regarding WSR-88D observations of chaff on a broad scale is provided, with particular attention given to observations of negative differential reflectivity during different stages of chaff fallout. Numerous cases are presented for analysis and characterization, both as an HCA class and as output from the filtered CDA.
READ LESS

Summary

Chaff presents multiple issues for aviation, air traffic controllers, and the FAA, including false weather identification and areas where flight paths may need to be altered. Chaff is a radar countermeasure commonly released from aircraft across the United States and is comprised of individual metallic strands designed to reflect certain...

READ MORE

Evaluation of the baseline NEXRAD icing hazard project

Published in:
37th Conference on Radar Meteorology, 14-18 September 2015

Summary

MIT Lincoln Laboratory has developed an icing hazard product that is now operational throughout the NEXRAD network. This initial version of the Icing Hazard Levels (IHL) algorithm is predicated on the presence of graupel as determined by the NEXRAD Hydrometeor Classification Algorithm (HCA). Graupel indicates that rime accretion on ice crystal aggregates is present. It is inferred that the riming process occurs at the altitude that HCA reports graupel as well as to some vertical depth above. To capture some of that depth, temperature and relative humidity interest fields are computed from meteorological model data based on the technique used in the National Center for Atmospheric Research's Current Icing Potential Product and utilized within IHL as warranted. A critical aspect of the IHL development has focused on the verification of the presence of icing. Two methods are used. For the first, pilot reports of icing (PIREPs) are used to score the performance of IHL. Since PIREPs are provided with inherent time and space uncertainties, a buffer of influence is associated with each PIREP when scoring IHL. Results show the IHL as configured is an effective indicator of a potential icing hazard when HCA graupel classifications are present. Results also show the importance of radar volume coverage pattern selection in detecting weak returns in winter weather. For the second, in situ icing missions were performed within range of a dual pol NEXRAD to provide quantitative data to identify the presence of supercooled liquid water. Comparisons of in situ data to HCA classifications show that HCA graupel indications do not fully expose the icing hazard and these findings are being used to direct future attention of IHL development. This paper will describe the verification method and performance assessment of the IHL initial capability.
READ LESS

Summary

MIT Lincoln Laboratory has developed an icing hazard product that is now operational throughout the NEXRAD network. This initial version of the Icing Hazard Levels (IHL) algorithm is predicated on the presence of graupel as determined by the NEXRAD Hydrometeor Classification Algorithm (HCA). Graupel indicates that rime accretion on ice...

READ MORE

Aircraft in situ validation of hydrometeors and icing conditions inferred by ground-based NEXRAD polarimetric radar

Published in:
SAE Int. Conf. on Icing of Aircraft, Engines, and Structures, ICE 2015, 15 June 2015.

Summary

MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals. Accordingly, laboratory diffusion chamber measurements in a tightly-controlled parameter space of temperature and humidity provide the linkage between shape and the expectation for the presence/absence of water saturation conditions necessary for icing hazard in situ. In agreement with the laboratory measurements pertaining to dendritic and hexagonal flat plate crystals, the aircraft measurements have verified the presence of supercooled water in mainly low concentrations coincident with regions showing layered anomalies of positive differential reflectivity (ZDR) by ground-based radar, otherwise known as +ZDR 'bright bands'. Extreme values of ZDR (up to +8 dB) have also been found to be coincident with hexagonal flat plate crystals and intermittent supercooled water, also consistent with laboratory measurements. The icing conditions found with the anisotropic description are considered non-classical (condensation/collision-coalescence) and require the ascent of air and availability of ice nuclei. A modest ascent rate (
READ LESS

Summary

MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated...

READ MORE

The 2013 Buffalo Area Icing and Radar Study (BAIRS)

Summary

The Next Generation Weather Radar (NEXRAD) network completed a dual polarization upgrade in 2013. The radars now can be used to sense the type of scatterers that cause the radar returns. The scatterers can be hydrometeors, biologicals, or earth-sourced. The ability to reliably interpret the radar-sensed thermodynamic phase of the hydrometeors (solid, liquid, mix) in the context of cloud microphysics and precipitation physics makes it possible to assess the icing hazard potential to aviation. That assessment for Federal Aviation Administration (FAA) purposes would necessarily be performed by automated algorithms based in hydrometeor classification terms. The truth as to the icing hazard aloft (where the radar scans) is required to ascertain the value of such algorithms. The Buffalo Area Icing and Radar Study (BAIRS) of 2013 was a partnership between MIT Lincoln Laboratory (LL) and the National Research Council of Canada (NRC) to perform in situ icing missions within the surveillance range of the dual polarization NEXRAD in Buffalo, NY. The goal of these 2013 missions, and the subject of this report, was to target specific winter weather scenarios known to exhibit an aviation icing hazard for the purpose of quantifying the microphysical properties of the target zones and verifying the presence of supercooled liquid water (SLW) to support validation of hydrometeor classification algorithms. These are the first such missions to execute in situ measurements within a NEXRAD's surveillance range running with the fielded, operational NEXRAD hydrometeor classifier. NRC's Convair-580 instrumented research plane was used for three icing missions covering 14 hours. Three distinctly different winter weather scenarios were encountered. This document details the analysis of in situ data such as particle type and liquid water content (LWC) with NEXRAD dual polarization parameters for the three missions. The BAIRS analysis identified these key findings: -NEXRAD radar returns are prevalent in conditions of supercooled water, -NEXRAD classification shows positive results based on particle imagery, -NEXRAD "dry snow" class masks the presence of mixed phase potential icing hazard, -NEXRAD "unknown" class contains diverse regions of icing hazard potential, and there are methods to classify some of these regions, and -In situ aircraft observations are an important tool to both verify algorithm performance and guide further development.
READ LESS

Summary

The Next Generation Weather Radar (NEXRAD) network completed a dual polarization upgrade in 2013. The radars now can be used to sense the type of scatterers that cause the radar returns. The scatterers can be hydrometeors, biologicals, or earth-sourced. The ability to reliably interpret the radar-sensed thermodynamic phase of the...

READ MORE

Measurements of differential reflectivity in snowstorms and warm season stratiform systems

Summary

The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to 13 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of -13 degrees C, and category B, which is typified by small reflectivity (from -10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.
READ LESS

Summary

The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion...

READ MORE

Validation of NEXRAD radar differential reflectivity in snowstorms with airborne microphysical measurements: evidence for hexagonal flat plate crystals

Summary

This study is concerned with the use of cloud microphysical aircraft measurements (the Convair 580) to verify the origin of differential reflectivity (ZDR) measured with a ground-based radar (the WSR-88D KBUF radar in Buffalo, New York). The underlying goal is to make use of the radar measurements to infer the presence or absence of supercooled water, which may pose an icing hazard to aircraft. The context of these measurements is the investment by the Federal Aviation Administration in the use of NEXRAD polarimetric radar and is addressed in the companion paper by Smalley et al. (2013, this Conference). The highlight of the measurements on February 28, 2013 was the finding of sustained populations of hexagonal flat plate crystals over a large area northwest of the KBUF radar, in conditions of dilute and intermittent supercooled water concentration. Some background discussion is in order prior to the discussion of the aircraft/radar observations that form the main body of this study. The anisotropy of hydrometeors, the role of humidity and temperature in crystal shape, and the common presence of hexagonal flat plate crystals in the laboratory cold box experiment are all discussed in turn.
READ LESS

Summary

This study is concerned with the use of cloud microphysical aircraft measurements (the Convair 580) to verify the origin of differential reflectivity (ZDR) measured with a ground-based radar (the WSR-88D KBUF radar in Buffalo, New York). The underlying goal is to make use of the radar measurements to infer the...

READ MORE

Towards the detection of aircraft icing conditions using operational dual-polarimetric radar

Published in:
7th European Conf. on Radar in Meteorology and Hydrology, ERAD, 25-29 June 2012.

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The next challenge is to use the dual-polarimetric data above the melting level to distinguish regions containing super-cooled liquid water, which constitutes an aviation icing hazard, from regions of pure ice and snow. It has been well documented that the S-band dual-polarimetric radar signatures at individual range gates of super-cooled liquid water and ice crystals overlap significantly, complicating the identification of icing conditions using individual radar measurements. Recently several investigators have found that the aggregate characteristics of dual-polarimetric radar measurements over regions on the order of several kilometers show distinguishing features between regions containing super-cooled liquid and those with ice only. In this study, the features found in the literature are evaluated, extended and combined using a fuzzy-logic framework to provide an icing threat likelihood. The results of this new algorithm are computed using data collected in Colorado from the Colorado State University CHILL radar and the National Center for Atmospheric Research S-Pol radar (collectively called FRONT – The Front Range Observational Testbed) collected in the winter of 2010/2011 in coordination with the NASA Icing Remote Sensing System (NIRSS) and compared to pilot reports on approach or departure from nearby airports. The preliminary results look encouraging and will be presented. The ultimate goal is to produce an end-to-end algorithm to produce a reliable icing threat product that can then be combined with existing icing detection systems to improve their performance.
READ LESS

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The...

READ MORE

Showing Results

1-10 of 19