The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation Administration (FAA). It is a follow-up to the similarly sponsored partnership of the original BAIRS conducted in the winter of 2013. The original BAIRS provided in situ verification and validation of icing and hydrometeors, respectively, within the radar domain in support of a hydrometeor-classification-based automated icing hazard algorithm. The BAIRS II motivation was to: --Collect additional in situ verification and validation data, --Probe further dual polarimetric radar features associated with icing hazard, --Provide foundations for additions to the icing hazard algorithm beyond hydrometeor classifications, and --Further characterize observable microphysical conditions in terms of S-band dual polarimetric radar data. With BAIRS II, the dual polarimetric capability is provided by multiple Next Generation Weather Radar (NEXRAD) S-band radars in New York State, and the verification of the icing hazard with microphysical and hydrometeor characterizations is provided by NRC's Convair-580 instrumented research plane during five icing missions covering about 21 mission hours. The ability to reliably interpret the NEXRAD dual polarization radar-sensed thermodynamic phase of the hydrometeors (solid, liquid, mix) in the context of cloud microphysics and precipitation physics makes it possible to assess the icing hazard potential to aviation. The challenges faced are the undetectable nature of supercooled cloud droplets (for Sband) and the isotropic nature of Supercooled Large Drops (SLD). The BAIRS II mission strategy pursued was to study and probe radar-identifiable, strongly anisotropic crystal targets (dendrites and needles) with which supercooled water (and water saturated conditions) are physically linked as a means for dual polarimetric detection of icing hazard. BAIRS II employed superior optical array probes along with state and microphysical instrumentation; and, using again NEXRAD-feature-guided flight paths, was able to make advances from the original BAIRS helpful to the icing algorithm development. The key findings that are given thorough treatment in this report are: --Identification of the radar-detectable "crystal sandwich" structure from two anisotropic crystal types stratified by in situ air temperature in association with varying levels of supercooled water --with layer thicknesses observed to 2 km, --over hundred-kilometer scales matched with the mesoscale surveillance of the NEXRAD radars, --Development and application of a multi-sensor cloud phase algorithm to distinguish between liquid phase, mixed phase, and glaciated (no icing) conditions for purposes of a "truth" database and improved analysis in BAIRS II, --Development of concatenated hydrometeor size distributions to examine the in situ growth of both liquid and solid hydrometeors over a broad size spectrum; used, in part, to demonstrate differences between maritime and continental conditions, and --The Icing Hazard Levels (IHL) algorithm’s verification in icing conditions is consistent with previous work and, new, is documented to perform well when indicating "glaciated" (no icing) conditions.