Publications

Refine Results

(Filters Applied) Clear All

The 2017 Buffalo Area Icing and Radar Study (BAIRS II)

Published in:
MIT Lincoln Laboratory Report ATC-447

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation Administration (FAA). It is a follow-up to the similarly sponsored partnership of the original BAIRS conducted in the winter of 2013. The original BAIRS provided in situ verification and validation of icing and hydrometeors, respectively, within the radar domain in support of a hydrometeor-classification-based automated icing hazard algorithm. The BAIRS II motivation was to: --Collect additional in situ verification and validation data, --Probe further dual polarimetric radar features associated with icing hazard, --Provide foundations for additions to the icing hazard algorithm beyond hydrometeor classifications, and --Further characterize observable microphysical conditions in terms of S-band dual polarimetric radar data. With BAIRS II, the dual polarimetric capability is provided by multiple Next Generation Weather Radar (NEXRAD) S-band radars in New York State, and the verification of the icing hazard with microphysical and hydrometeor characterizations is provided by NRC's Convair-580 instrumented research plane during five icing missions covering about 21 mission hours. The ability to reliably interpret the NEXRAD dual polarization radar-sensed thermodynamic phase of the hydrometeors (solid, liquid, mix) in the context of cloud microphysics and precipitation physics makes it possible to assess the icing hazard potential to aviation. The challenges faced are the undetectable nature of supercooled cloud droplets (for Sband) and the isotropic nature of Supercooled Large Drops (SLD). The BAIRS II mission strategy pursued was to study and probe radar-identifiable, strongly anisotropic crystal targets (dendrites and needles) with which supercooled water (and water saturated conditions) are physically linked as a means for dual polarimetric detection of icing hazard. BAIRS II employed superior optical array probes along with state and microphysical instrumentation; and, using again NEXRAD-feature-guided flight paths, was able to make advances from the original BAIRS helpful to the icing algorithm development. The key findings that are given thorough treatment in this report are: --Identification of the radar-detectable "crystal sandwich" structure from two anisotropic crystal types stratified by in situ air temperature in association with varying levels of supercooled water --with layer thicknesses observed to 2 km, --over hundred-kilometer scales matched with the mesoscale surveillance of the NEXRAD radars, --Development and application of a multi-sensor cloud phase algorithm to distinguish between liquid phase, mixed phase, and glaciated (no icing) conditions for purposes of a "truth" database and improved analysis in BAIRS II, --Development of concatenated hydrometeor size distributions to examine the in situ growth of both liquid and solid hydrometeors over a broad size spectrum; used, in part, to demonstrate differences between maritime and continental conditions, and --The Icing Hazard Levels (IHL) algorithm’s verification in icing conditions is consistent with previous work and, new, is documented to perform well when indicating "glaciated" (no icing) conditions.
READ LESS

Summary

The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...

READ MORE

Wind information requirements for NextGen applications phase 7 report

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter fixes down to 7,000' AGL regardless of the forecast quality provided. Below 7,000' AGL, RTA performance significantly degraded demonstrating around 80% compliance under the best forecast and operating conditions. This report also provides a comprehensive lexicon of aviation and air traffic control related "wind" terms.
READ LESS

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter...

READ MORE

Monetized weather radar network benefits for tornado cost reduction

Author:
Published in:
MIT Lincoln Laboratory Report NOAA-35

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance, including increased lead times, are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In combination, then, it is clearly established that better and faster radar observations reduce tornado casualty rates. Furthermore, lower false alarm ratios save costs by cutting down on people's time lost when taking shelter.
READ LESS

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental...

READ MORE

Weather radar network benefit model for tornadoes

Author:
Published in:
J. Appl. Meteor. Climatol., 22 April 2019, doi:10.1175/JAMC-D-18-0205.1.

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false alarm ratios save cost by cutting down on work and personal time lost while taking shelter. The model is run on the existing contiguous United States weather radar network as well as hypothetical future configurations. Results show that the current radars provide a tornado-based benefit of ~$490M per year. The remaining benefit pool is about $260M per year that is roughly split evenly between coverage- and rapid-scanning-related gaps.
READ LESS

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results...

READ MORE

Airport Wind Observations Architectural Analysis(2.4 MB)

Published in:
Project Report ATC-443, MIT Lincoln Laboratory

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements, identifies potential shortfalls, and offers recommendations for improvements to support the long-term goals of the FAA NextGen system.
READ LESS

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements...

READ MORE

CoSPA and Traffic Flow Impact Operational Demonstration for the 2017 Convective Season(4.48 MB)

Published in:
Project Report ATC-441, MIT Lincoln Laboratory

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.
READ LESS

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.

READ MORE

Polarimetric observations of chaff using the WSR-88D network

Published in:
J. Appl. Meteor. Climatol., Vol. 57, No. 5, 1 May 2018, pp. 1063-1081.

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. The database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity (ZDR) in chaff and its dependence on height. Contrary to radar data observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion regarding the observed characteristics is presented, and hypotheses for the observed ZDR dynamics are put forth.
READ LESS

Summary

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...

READ MORE

Quantification of radar QPE performance based on SENSR network design possibilities

Published in:
2018 IEEE Radar Conf., RadarConf, 23-27 April 2018.

Summary

In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial use. As part of this goal, the participating agencies have developed preliminary performance requirements that not only assume minimum capabilities based on legacy radars, but also recognize the need for enhancements in future radar networks. The relatively low density of the legacy radar networks, especially the WSR-88D network, had led to the goal of enhancing low-altitude weather coverage. With multiple design metrics and network possibilities still available to the SENSR agencies, the benefits of low-altitude coverage must be assessed quantitatively. This study lays the groundwork for estimating Quantitative Precipitation Estimation (QPE) differences based on network density, array size, and polarimetric bias. These factors create a pareto front of cost-benefit for QPE in a new radar network, and these results will eventually be used to determine appropriate tradeoffs for SENSR requirements. Results of this study are presented in the form of two case examples that quantify errors based on polarimetric bias and elevation, along with a description of eventual application to a national network in upcoming expansion of the work.
READ LESS

Summary

In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial...

READ MORE

Preliminary UAS Weather Research Roadmap(1.51 MB)

Published in:
Project Report ATC-438, MIT Lincoln Laboratory

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the gaps that were identified.
READ LESS

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the...

READ MORE

Preliminary Weather Information Gap Analysis for UAS Operations(4.88 MB)

Published in:
Project Report ATC-437, MIT Lincoln Laboratory

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...

READ MORE