Publications
Tagged As
Impacts of WSR-88D SAILS and MRLE VCP options on severe weather warning performance
Summary
Summary
The impacts of supplemental adaptive intra-volume low-level scan (SAILS) and mid-volume rescan of low-level elevations (MRLE) usage on the Weather Surveillance Radar 1988-Doppler (WSR-88D) with respect to severe weather warning performance were evaluated. This is an update and expansion of an earlier study by Cho et al. (2022). Statistical methods...
WSR-88D microburst detection performance evaluation
Summary
Summary
An empirical study of Weather Surveillance Radar 1988-Doppler (WSR-88D) microburst detection performance is conducted using Integrated Terminal Weather System (ITWS) microburst detections as reference. Data from 14 airport regions during 181 independent time periods spanning the years 2015–2022 are utilized for the evaluation. Results show that the detection and false...
Visibility estimation through image analytics
Summary
Summary
MIT Lincoln Laboratory (MIT LL) has developed an algorithm, known as the Visibility Estimation through Image Analytics Algorithm (VEIA), that ingests camera imagery collected by the FAA Weather Cameras Program Office (WeatherCams) and estimates the meteorological visibility in statute miles. The algorithm uses the presence of edges in the imagery...
Impact of WSR-88D intra-volume low-level scans on sever weather warning performance
Summary
Summary
The statistical relationship between supplemental adaptive intra-volume low-level scan (SAILS) usage on the Weather Surveillance Radar-1988 Doppler and National Weather Service severe storm warning performance during 2014–20 is analyzed. Results show statistically significant improvement in severe thunderstorm (SVR), flash flood (FF), and tornado (TOR) warning performance associated with SAILS-on versus...
Radar coverage analysis for the Terminal Precipitation on the Glass Program
Summary
Summary
The Terminal Precipitation on the Glass (TPoG) program proposes to improve the STARS precipitation depiction by adding an alternative precipitation product based on a national weather-radar-based mosaic, i.e., the NextGen Weather System (aka NextGen Weather Processor [NWP] and Common Support Services Weather [CSS-Wx]). This report describes spatial and temporal domain...
Towards the next generation operational meteorological radar
Summary
Summary
This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA's future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these...
Mobile capabilities for micro-meteorological predictions: FY20 Homeland Protection and Air Traffic Control Technical Investment Program
Summary
Summary
Existing operational numerical weather forecast systems are geographically too coarse and not sufficiently accurate to adequately support future needs in applications such as Advanced Air Mobility, Unmanned Aerial Systems, and wildfire forecasting. This is especially true with respect to wind forecasts. Principal factors contributing to this are the lack of...
Geospatial QPE accuracy dependence on weather radar network configurations
Summary
Summary
The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on...
Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction
Summary
Summary
An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic...
Monetized weather radar network benefits for tornado cost reduction
Summary
Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental...