Publications

Refine Results

(Filters Applied) Clear All

Airport Wind Observations Architectural Analysis(2.4 MB)

Date:
July 10, 2018
Published in:
Project Report ATC-443, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements, identifies potential shortfalls, and offers recommendations for improvements to support the long-term goals of the FAA NextGen system.
READ LESS

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements,...
READ MORE

CoSPA and Traffic Flow Impact Operational Demonstration for the 2017 Convective Season(4.48 MB)

Date:
May 7, 2018
Published in:
Project Report ATC-441, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.
READ LESS

Summary

MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.
READ MORE

Preliminary UAS Weather Research Roadmap(1.51 MB)

Date:
November 3, 2017
Published in:
Project Report ATC-438, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the gaps that were identified.
READ LESS

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the...
READ MORE

Preliminary Weather Information Gap Analysis for UAS Operations(4.88 MB)

Date:
November 2, 2017
Published in:
Project Report ATC-437, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...
READ MORE

Preliminary weather information gap analysis for UAS operations, revision 1

Date:
November 2, 2017
Published in:
Project Report ATC-437-REV-1, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations. An initial set of surveys and interviews with UAS operators identified 12 major gaps. These gaps were then prioritized based on the importance of the weather phenomena to UAS operations and the current availability of adequate weather information to UAS operators. Low altitude UAS operations are of particular concern. The lack of observations of ceiling, visibility, and winds near most low altitude UAS operational locations causes the validation of numerical weather forecasts of weather conditions for those locations to be the highest priority. Hazardous weather alerting for convective activity and strong surface winds are a major concern for UAS operations that could be addressed in part by access to existing FAA real time conventional aircraft weather products.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...
READ MORE

Wind Information Requirements for NextGen Operations Phase 5 Report(13.64 MB)

Date:
August 22, 2017
Published in:
Project Report ATC-439, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating aircraft. The work described in this report summarizes the major activities conducted in the current phase of this program which builds upon prior work.
READ LESS

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating...
READ MORE

Wind information requirements for NextGen operations, phase 5 report

Date:
August 22, 2017
Published in:
Project Report ATC-439, MIT Lincoln Laboratory
Type:
Project Report

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating aircraft. The work described in this report summarizes the major activities conducted in the current phase of this program which builds upon prior work. The major objectives were: 1. Support RTCA Special Committee-206 Aeronautical Information and Meteorological Data Link Services and co-chair a sub-group responsible for developing the document "Guidance for Data Linking Forecast and Real-Time Wind Information to Aircraft." 2. Analyze the performance of publicly available forecast as compared to in-situ reported atmospheric conditions, specifically comparing Global Forecast System (GFS) and High Resolution Rapid Refresh (HRRR) forecast data to recorded in-flight weather Meteorological Data Collection and Reporting System (MDCRS) data. 3. Analyze current and future Flight Management Systems (FMSs) to conduct operations at significantly lower altitudes than previous studies. 4. Evaluate potential sources of aircraft-derived winds to better support 4D-TBO activities. 5. Provide recommendations for high-value future work.
READ LESS

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating...
READ MORE

Report on the 2016 CoSPA and Traffic Flow Impact Operational Demonstration(4.64 MB)

Date:
June 1, 2017
Published in:
Project Report ATC-433, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

The 2016 Storm Prediction for Aviation (CoSPA) Demonstration was conducted from 1 June to 31 October 2016. As part of the demonstration, Federal Aviation Administration (FAA) facilities and commercial airlines were visited by MIT Lincoln Laboratory (MIT LL) observers, including initial training visits. Targeted field observations were conducted to gather information on how the CoSPA weather forecast was used in operations, to obtain feedback on new capabilities, and to collect comments for improvement.
READ LESS

Summary

The 2016 Storm Prediction for Aviation (CoSPA) Demonstration was conducted from 1 June to 31 October 2016. As part of the demonstration, Federal Aviation Administration (FAA) facilities and commercial airlines were visited by MIT Lincoln Laboratory (MIT LL) observers, including initial training visits. Targeted field observations were conducted to gather...
READ MORE

Wind information requirements for NextGen applications phase 4 final report(5.87 MB)

Date:
March 6, 2017
Published in:
Project Report ATC-431, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in this report summarizes the activities conducted in FY15, which builds upon prior work.
READ LESS

Summary

Many NextGen applications depend on access to high accuracy wind data due to time-based control elements, such as required time of arrival at a meter fix under 4D-Trajectory-Based Operations/Time of Arrival Control procedures or compliance to an assigned spacing goal between aircraft under Interval Management procedures. The work described in...
READ MORE

2015 operational observation of CoSPA and traffic flow impact(4.3 MB)

Date:
March 15, 2016
Published in:
Project Report ATC-429, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate FAA facilities and five different airline operation centers.
READ LESS

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate...
READ MORE