Existing operational numerical weather forecast systems are geographically too coarse and not sufficiently accurate to adequately support future needs in applications such as Advanced Air Mobility, Unmanned Aerial Systems, and wildfire forecasting. This is especially true with respect to wind forecasts. Principal factors contributing to this are the lack of observation data within the atmospheric boundary layer and numerical forecast models that operate on low-resolution grids. This project endeavored to address both of these issues. Firstly, by development and demonstration of specially equipped fixed-wing drones to collect atmospheric data within the boundary layer, and secondly by creating a high-resolution weather research forecast model executing on the Lincoln Laboratory Supercomputing Center. Some success was achieved in the development and flight testing of the specialized drones. Significant success was achieved in the development of the high-resolution forecasting system and demonstrating the feasibility of ingesting atmospheric observations from small airborne platforms.