Publications
Tagged As
Extended polarimetric observations of chaff using the WSR-88D weather radar network
Summary
Summary
Military chaff is a metallic, fibrous radar countermeasure that is released by aircraft and rockets for diversion and masking of targets. It is often released across the United States for training purposes, and, due to its resonant cut lengths, is often observed on the S-band Weather Surveillance Radar–1988 Doppler (WSR-88D)...
CoSPA data product description
Summary
Summary
This document contains a description of Consolidated Storm Prediction for Aviation (CoSPA) data products that are packaged and distributed for external users. As described in Rappa and Troxel, 2013 [1] for Corridor Integrated Weather System (CIWS) data products, CoSPA products are categorized as gridded and non-gridded. Gridded products are typically...
The 2017 Buffalo Area Icing and Radar Study (BAIRS II)
Summary
Summary
The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...
Enhanced signal processing algorithms for the ASR-9 Weather Systems Processor
Summary
Summary
New signal processing algorithms for the Airport Surveillance Radar-9 (ASR-9) Weather Systems Processor (WSP) are introduced. The Moving Clutter Spectral Processing for Uneven-Sampled Data with Dealiasing (MCSPUDD) algorithm suite removes isolated moving clutter targets and corrects aliased velocity values on a per-range-gate basis. The spectral differencing technique is applied to...
Evaluation of the baseline NEXRAD icing hazard project
Summary
Summary
MIT Lincoln Laboratory has developed an icing hazard product that is now operational throughout the NEXRAD network. This initial version of the Icing Hazard Levels (IHL) algorithm is predicated on the presence of graupel as determined by the NEXRAD Hydrometeor Classification Algorithm (HCA). Graupel indicates that rime accretion on ice...
Aircraft in situ validation of hydrometeors and icing conditions inferred by ground-based NEXRAD polarimetric radar
Summary
Summary
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated...
Measurements of differential reflectivity in snowstorms and warm season stratiform systems
Summary
Summary
The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion...
Forecast confidence measures for deterministic storm-scale aviation forecasts
Summary
Summary
Deterministic storm-scale weather forecasts, such as those generated from the FAA's 0-8 hour CoSPA system, are highly valuable to aviation traffic managers. They provide forecasted characteristics of storm structure, strength, orientation, and coverage that are very helpful for strategic planning purposes in the National Airspace System (NAS). However, these deterministic...
Velocity estimation improvements for the ASR-9 Weather Systems Processor
Summary
Summary
The Airport Surveillance Radar (ASR-9) is a rapid-scanning terminal aircraft detection system deployed at airports around the United States. To provide cost-effective wind shear detection capability at medium-density airports, the Weather Systems Processor (WSP) was developed and added on to the ASR-9 at 35 sites. The WSP on the ASR-9...
Validation of NEXRAD radar differential reflectivity in snowstorms with airborne microphysical measurements: evidence for hexagonal flat plate crystals
Summary
Summary
This study is concerned with the use of cloud microphysical aircraft measurements (the Convair 580) to verify the origin of differential reflectivity (ZDR) measured with a ground-based radar (the WSR-88D KBUF radar in Buffalo, New York). The underlying goal is to make use of the radar measurements to infer the...