Publications

Refine Results

(Filters Applied) Clear All

Antennas and RF components designed with graded index composite materials

Summary

Antennas and RF components in general, can greatly benefit with the recent development of low-loss 3D print graded index materials. The additional degrees of freedom provided by graded index materials can result in the design of antennas and other RF components with superior performance than currently available designs based on conventional constant permittivity materials. Here we discuss our work designing flat lenses for antennas and RF matching networks as well as filters based on graded index composite materials.
READ LESS

Summary

Antennas and RF components in general, can greatly benefit with the recent development of low-loss 3D print graded index materials. The additional degrees of freedom provided by graded index materials can result in the design of antennas and other RF components with superior performance than currently available designs based on...

READ MORE

CW radar operation in the focused near-field

Published in:
2019 Intl. Applied Computational Electromagnetics Society Symp., ACES, 14-19 April 2019.

Summary

In this paper we will show by computer simulation and by measurements that the horn antennas of a bi-static radar operating in the near-field have a distinct maximum at a non-zero range. By focusing the antennas on this hot spot a low-powered, continuous-wave Ku-band radar could detect flying mosquitoes at very short range.
READ LESS

Summary

In this paper we will show by computer simulation and by measurements that the horn antennas of a bi-static radar operating in the near-field have a distinct maximum at a non-zero range. By focusing the antennas on this hot spot a low-powered, continuous-wave Ku-band radar could detect flying mosquitoes at...

READ MORE

Modeling and validation of a mm-wave shaped dielectric lens antenna

Published in:
2018 Int. Applied Computational Electromagnetics Society Symp., ACES, 29 July - 1 August 2018.

Summary

The modeling and validation of a 33 GHz shaped dielectric antenna design is investigated. The electromagnetic modeling was performed in both WIPL-D and FEKO, and was used to validate the antenna design prior to fabrication of the lens. It is shown that both WIPL-D and FEKO yield similarly accurate results as compared to measured far-field gain radiation patterns.
READ LESS

Summary

The modeling and validation of a 33 GHz shaped dielectric antenna design is investigated. The electromagnetic modeling was performed in both WIPL-D and FEKO, and was used to validate the antenna design prior to fabrication of the lens. It is shown that both WIPL-D and FEKO yield similarly accurate results...

READ MORE

Polarization ratio determination with two identical linearly polarized antennas

Published in:
2017 IEEE AP-S Symp. on Antennas and Propagation and USNC Radio Science Meeting, 9-14 July 2017.

Summary

This paper describes a method for determining the complex polarization ratio using two identical, linearly polarized antennas. By Fourier transform analysis of s21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be transformed into an equivalent linear polarization ratio. A linearly polarized reference antenna is not required. The technique was verified by electromagnetic simulations and illustrated by measurements in an anechoic chamber with two 3.3 GHz square patch antennas.
READ LESS

Summary

This paper describes a method for determining the complex polarization ratio using two identical, linearly polarized antennas. By Fourier transform analysis of s21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be transformed into an equivalent linear polarization ratio. A...

READ MORE

A rotating source polarization measurement technique using two circularly polarized antennas

Published in:
38th Mtg. and Symp. of the Antenna Measurement Techniques Assoc., AMTA 2016, 30 October - 4 November 2016.

Summary

This paper combines the standard two-antenna gain measurement technique with the rotating source method for measuring the polarization ratio and tilt angle of the polarization ellipse of a circularly polarized antenna. The technique is illustrated with two identical helical antennas, one for the source and one for the antenna-under-test (AUT), facing each other. Measurements of the voltage transfer ratio are made over one 360 degree on-axis rotation of the source while the AUT remains stationary. The rotation causes the phase of the electric field of the principal polarization to rotate in one direction and the phase of the cross polarization to rotate in the opposite direction. A Discrete Fourier Transform (DFT) of the data from a single rotation is insufficient to resolve the two polarization components. Leakage from the principal polarization will most likely cover up the low-level opposite polarization signal. However, the DFT resolution can be artificially increased by appending to the measured data, precisely M-1 copies of the data. Now the polarization components will be separated by 2M revolutions. Application of a heavy weighting function to the augmented data and a phase compensation to the DFT allows a clear determination of the amplitude and phase of the on-axis principal and cross polarization components. The technique was verified by electromagnetic simulations and by measurements in an anechoic chamber with two 6-turn 5.8 GHz helical antennas separated by 4 feet. There was very good agreement between the simulations and measurements of the polarization ellipse tilt angle and a -20 dB polarization ratio.
READ LESS

Summary

This paper combines the standard two-antenna gain measurement technique with the rotating source method for measuring the polarization ratio and tilt angle of the polarization ellipse of a circularly polarized antenna. The technique is illustrated with two identical helical antennas, one for the source and one for the antenna-under-test (AUT)...

READ MORE

3D printed conformal array antenna: simulations and measurements

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at L band are in good agreement.
READ LESS

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at...

READ MORE

Design and analysis of an axisymmetric phased array fed Gregorian reflector system for limited scanning

Author:
Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.
Topic:
R&D group:

Summary

An axisymmetric phased array fed confocal parabolic Gregorian reflector system is explored. The antenna utilizes a planar phased array located near the vertex of the primary reflector. Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for limited scanning. Simulations of the scanning performance of a dual reflector system with a 2 meter diameter primary reflector operating at Ku band are presented.
READ LESS

Summary

An axisymmetric phased array fed confocal parabolic Gregorian reflector system is explored. The antenna utilizes a planar phased array located near the vertex of the primary reflector. Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for limited scanning...

READ MORE

Biomimetic antenna array using non-foster network to enhance directional sensitivity over broad frequency band

Published in:
IEEE Trans. Antennas Propag., Vol. 64, No. 10, October 2016, pp. 4297-4305.

Summary

Biologically inspired antenna arrays that mimic the hearing mechanism of insects are called biomimetic antenna arrays (BMAAs). They are attractive for microwave applications, such as compact direction finding systems. Earlier, the BMAAs were designed for narrow frequency band phase enhancement, whereas we now propose to design them for use with a non-Foster coupling network (NFC). As the NFCs are not restricted by gain bandwidth product, their incorporation in the design can provide wideband phase enhancement. A method for designing BMAA, using a non-Foster coupling network (NFC-BMAA), and also for obtaining system stability, is presented. Simulated and measured results of the fabricated structure are also presented and discussed.
READ LESS

Summary

Biologically inspired antenna arrays that mimic the hearing mechanism of insects are called biomimetic antenna arrays (BMAAs). They are attractive for microwave applications, such as compact direction finding systems. Earlier, the BMAAs were designed for narrow frequency band phase enhancement, whereas we now propose to design them for use with...

READ MORE

Multi-channel agile comb generator for antenna radiation pattern measurements

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is to combine a low-cost receiver with a flexible signal source. This paper presents the design of a tunable comb generator prototype that is capable of outputting frequencies up to 4 GHz. The compact nature of this source along with its potential to be dynamically reconfigured yields a device that can be used to measure antenna patterns for many different applications.
READ LESS

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is...

READ MORE

Single antenna in-band full-duplex isolation-improvement techniques

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.
Topic:
R&D group:

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this paper, and illustrate how RF components can be used to minimize the consequential self-interference of these systems. Two unique cancellation schemes were validated, and the isolation of a single-antenna transceiver was measured to improve by 15 and 33 dB over the 100 MHz bandwidth centered at 2.45 GHz.
READ LESS

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this...

READ MORE