Publications

Refine Results

(Filters Applied) Clear All

Wind information requirements for NextGen applications phase 7 report

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter fixes down to 7,000' AGL regardless of the forecast quality provided. Below 7,000' AGL, RTA performance significantly degraded demonstrating around 80% compliance under the best forecast and operating conditions. This report also provides a comprehensive lexicon of aviation and air traffic control related "wind" terms.
READ LESS

Summary

This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter...

READ MORE

Wind information requirements for NextGen operations, phase 5 report

Published in:
Project Report ATC-439, MIT Lincoln Laboratory

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating aircraft. The work described in this report summarizes the major activities conducted in the current phase of this program which builds upon prior work. The major objectives were: 1. Support RTCA Special Committee-206 Aeronautical Information and Meteorological Data Link Services and co-chair a sub-group responsible for developing the document "Guidance for Data Linking Forecast and Real-Time Wind Information to Aircraft." 2. Analyze the performance of publicly available forecast as compared to in-situ reported atmospheric conditions, specifically comparing Global Forecast System (GFS) and High Resolution Rapid Refresh (HRRR) forecast data to recorded in-flight weather Meteorological Data Collection and Reporting System (MDCRS) data. 3. Analyze current and future Flight Management Systems (FMSs) to conduct operations at significantly lower altitudes than previous studies. 4. Evaluate potential sources of aircraft-derived winds to better support 4D-TBO activities. 5. Provide recommendations for high-value future work.
READ LESS

Summary

NextGen applications with time-based control elements, such as required time of arrival (RTA) at a meter fix under 4D trajectory-based operations (4D-TBO)/time of arrival control (TOAC) procedures or assigned spacing goal between aircraft under Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by participating...

READ MORE

Report on the 2016 CoSPA and Traffic Flow Impact Operational Demonstration(4.64 MB)

Published in:
Project Report ATC-433, MIT Lincoln Laboratory

Summary

The 2016 Storm Prediction for Aviation (CoSPA) Demonstration was conducted from 1 June to 31 October 2016. As part of the demonstration, Federal Aviation Administration (FAA) facilities and commercial airlines were visited by MIT Lincoln Laboratory (MIT LL) observers, including initial training visits. Targeted field observations were conducted to gather information on how the CoSPA weather forecast was used in operations, to obtain feedback on new capabilities, and to collect comments for improvement.
READ LESS

Summary

The 2016 Storm Prediction for Aviation (CoSPA) Demonstration was conducted from 1 June to 31 October 2016. As part of the demonstration, Federal Aviation Administration (FAA) facilities and commercial airlines were visited by MIT Lincoln Laboratory (MIT LL) observers, including initial training visits. Targeted field observations were conducted to gather...

READ MORE

Terminal Flight Data Manager (TFDM) environmental benefits assessment(2.35 MB)

Published in:
Project Report ATC-420, MIT Lincoln Laboratory

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects.
READ LESS

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects.

READ MORE

2015 operational observation of CoSPA and traffic flow impact(4.3 MB)

Published in:
Project Report ATC-429, MIT Lincoln Laboratory

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate FAA facilities and five different airline operation centers.
READ LESS

Summary

This technical report summarizes the operational observations recorded by MIT Lincoln Laboratory (MIT LL) aviation subject matter experts during the period 13 April to 31 October 2015. Three separate field observations were conducted over four convective weather days across the eastern National Airspace System (NAS) with visits to five separate...

READ MORE

En route sector capacity model final report(1.98 MB)

Author:
Published in:
Project Report ATC-426, MIT Lincoln Laboratory

Summary

Accurate predictions of en route sector capacity are vital when analyzing the benefits of proposed new air traffic management decision-support tools or new airspace designs. Controller workload is the main determinant of sector capacity. This report describes a new workload-based capacity model that improves upon the Federal Aviation Administration’s current Monitor Alert capacity model.
READ LESS

Summary

Accurate predictions of en route sector capacity are vital when analyzing the benefits of proposed new air traffic management decision-support tools or new airspace designs. Controller workload is the main determinant of sector capacity. This report describes a new workload-based capacity model that improves upon the Federal Aviation Administration’s current...

READ MORE

Terminal Flight Data Manager (TFDM) runway balancing capability assessment(2.48 MB)

Published in:
Project Report ATC-421, MIT Lincoln Laboratory

Summary

Two of the capabilities being considered for the Terminal Flight Data Manager (TFDM) automation system are an airport resource information platform for departure-demand allocation and a runway balancing tool. This document reports the potential delay-reduction benefits of both capabilities at three case-study airports that were considered representative of the range of airports considered for TFDM deployment.
READ LESS

Summary

Two of the capabilities being considered for the Terminal Flight Data Manager (TFDM) automation system are an airport resource information platform for departure-demand allocation and a runway balancing tool. This document reports the potential delay-reduction benefits of both capabilities at three case-study airports that were considered representative of the range...

READ MORE

Initial Assessment of Wind Forecasts for Airport Acceptance Rate (AAR) and Ground Delay Program (GDP) Planning(2.13 MB)

Published in:
Project Report ATC-414, MIT Lincoln Laboratory

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). This report provides an initial analysis of the impacts of surface winds and winds aloft on the key factors associated with the AAR (the selection of runway configuration and aircraft ground speed and spacing on final approach) and the capabilities of currently available weather forecasts to accurately predict those impacts.
READ LESS

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). This report provides an initial analysis of the impacts of surface winds and winds aloft on the key factors associated with...

READ MORE

An applications architecture to support FAA wake turbulence mitigation systems development and deployment

Published in:
Project Report ATC-412, MIT Lincoln Laboratory

Summary

The Wake Turbulence Program within the Federal Aviation Administration (FAA) is considering a number of new procedures for safely reducing the wake vortex spacing requirements between aircraft. One category of procedures investigates wind-dependent procedures, i.e., procedures that can be applied when wind conditions are expected to transport the wake from a lead aircraft away from the path of a trailing aircraft. MIT Lincoln Laboratory developed a Wind Forecast Algorithm (WFA) to determine when conditions allow these wind-dependent procedures to be available to traffic managers. The baseline WFA is used within the Wake Turbulence Mitigation for Departures (WTMD) system, which establishes spacing procedures for departures on closely spaced parallel runways. A number of new procedures are also under consideration, each of which will require a modification and/or expansion of the baseline WFA. With time, the volume and number of disparate data sources used in the development process has steadily increased to the point where the existing development environment has become cumbersome and inadequate. As a result, through support of the FAA Wake Turbulence Program, MIT Lincoln Laboratory has undergone a complete overhaul of the computer processing and storage architecture used for WFA development. This will serve two main purposes. First, it will greatly expedite the development process, which is highly iterative and requires increasingly large volumes of data. Second, an updated architecture design will allow for an expeditious transition of developmental systems into the operational environment within FAA's NextGen framework. A key focus of this report describes how the new design is sufficiently compatible and flexible to serve within this anticipated FAA framework. The unified application architecture and infrastructure being designed and implemented will support continuing development, playback requirements, and real-time deployments. This architecture is composed of several application components including a wind data extract-transform-loaf (ETL) application, the WFA algorithm, and a display interface to accommodate both the development process and for potential use within the FAA operational environment. The Wind-ETL application component acquires, processes, and archives wind data from a variety of NOAA-based hourly forecasts and airport-vicinity weather measurement equipment. This wind data is ingested by the WFA, which computes and disseminates its availability predictions to the WTMx Display application component, which archives these predictions and also allows for presentation to the airport tower supervisor via the WTMx display user interface decision support tool. This architecture is designed to be flexible to accepting new weather data feeds, scalable to the high bandwidth and processing and storage capabilities required, provide sufficient automation and self-healing capabilities, and portable to allow its introduction into alternate facility sites and its integration into other FAA software systems.
READ LESS

Summary

The Wake Turbulence Program within the Federal Aviation Administration (FAA) is considering a number of new procedures for safely reducing the wake vortex spacing requirements between aircraft. One category of procedures investigates wind-dependent procedures, i.e., procedures that can be applied when wind conditions are expected to transport the wake from...

READ MORE

Airport surface traffic management decision support - perspectives based on tower flight data manager prototype

Summary

This report describes accomplishments and insights gathered during the development of decision support tools as part of the Terminal Flight Data Manager (TFDM) program. This work was performed by MIT Lincoln Laboratory and sponsored by the Federal Aviation Administration (FAA). The TFDM program integrated flight data, aircraft surveillance, information on weather and traffic flow constraints, and other data required to optimize airport configuration and arrival/departure management functions. The prototype has been evaluated in both human-in-the-loop simulations, and during operational tests at Dallas/Fort Worth (DFW) International Airport. In parallel, the Laboratory estimated future national operational benefits for TFDM decision support functions, using analysis and performance data gathered from major airports in the US. This analysis indicated that the greatest potential operational benefits would come from decision support tools that facilitate: i) managing runway queues and sequences, ii) tactical management of flight routes and times, impacted by weather and traffic constraints, and iii) managing airport configuration changes. Evaluation of TFDM prototype decision support functions in each of these areas provided valuable insights relative to the maturity of current capabilities and research needed to close performance gaps.
READ LESS

Summary

This report describes accomplishments and insights gathered during the development of decision support tools as part of the Terminal Flight Data Manager (TFDM) program. This work was performed by MIT Lincoln Laboratory and sponsored by the Federal Aviation Administration (FAA). The TFDM program integrated flight data, aircraft surveillance, information on...

READ MORE