Publications
Tagged As
Rate control with autoregressive forecasting for high frequency communication
Summary
Summary
This work introduces a data-driven framework for rate control and applies it to high frequency (HF) communication systems that propagate via the Earth’s ionosphere. The rate control approach uses statistical techniques to forecast channel state with an autoregressive (AR) model, which has previously been applied to different forms of wireless...
Capacity bounds for frequency-hopped BPSK
Summary
Summary
In some channels, such as the frequency-hop channel, the transmission may undergo abrupt transitions in phase. This can require the receiver to re-estimate the phase on each hop, or for the system to utilize modulation techniques that lend themselves to noncoherent detection. How well the receiver can estimate the phase...
Learning emergent discrete message communication for cooperative reinforcement learning
Summary
Summary
Communication is a important factor that enables agents work cooperatively in multi-agent reinforcement learning (MARL). Most previous work uses continuous message communication whose high representational capacity comes at the expense of interpretability. Allowing agents to learn their own discrete message communication protocol emerged from a variety of domains can increase...
Collaborative and passive channel gain estimation in fading environments
Summary
Summary
Dynamic spectrum access techniques are typically aided by knowledge of the wireless channel gains among participating radios, as this knowledge allows the potential interference impact of any radio's transmissions on its neighbors to be quantified. We present a technique for collaborative inference of the channel gains which relies solely on...
Single antenna in-band full-duplex isolation-improvement techniques
Summary
Summary
Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this...
Multitap RF canceller for in-band full-duplex wireless communications
Summary
Summary
In-band full-duplex wireless communications are challenging because they require the mitigation of self-interference caused by the co-located transmitter to operate effectively. This paper presents a novel tapped delay line RF canceller architecture with multiple non-uniform pre-weighted taps to improve system isolation by cancelling both the direct antenna coupling as well...
Simultaneous Transmit and Receive (STAR) mobile testbed
Summary
Summary
Simultaneous Transmit and Receive (STAR) systems typically utilize multiple cancellation layers to improve system isolation and avoid self-interference. The design of these different layers must be evaluated both individually and as a whole to determine their effectiveness in various environments. A flexible and reusable mobile testbed was constructed to aid...
Fast online learning of antijamming and jamming strategies
Summary
Summary
Competing Cognitive Radio Network (CCRN) coalesces communicator (comm) nodes and jammers to achieve maximal networking efficiency in the presence of adversarial threats. We have previously developed two contrasting approaches for CCRN based on multi-armed bandit (MAB) and Qlearning. Despite their differences, both approaches have shown to achieve optimal throughput performance...
Vehicle-mounted STAR antenna isolation performance
Summary
Summary
Vehicle-to-vehicle communication systems promise enhanced safety for passengers, but require access to a crowded wireless spectrum to enable their data links. Simultaneous Transmit and Receive (STAR) systems can facilitate this spectrum access by increasing the number of users within a given frequency band. Since high isolation is needed for STAR...
Simultaneous transmit and receive (STAR) system architecture using multiple analog cancellation layers
Summary
Summary
Simultaneous Transmit and Receive operation requires a high amount of transmit-to-receive isolation in order to avoid self-interference. This isolation is best achieved by utilizing multiple cancellation techniques. The combination of adaptive multiple-input multiple-output spatial cancellation with a high-isolation antenna and RF canceller produces a novel system architecture that focuses on...