Publications

Refine Results

(Filters Applied) Clear All

Selective network discovery via deep reinforcement learning on embedded spaces

Published in:
Appl. Netw. Sci., Vol. 6, No.1, December 2021, Art. No. 24.

Summary

Complex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream learning tasks given resource collection constraints are of great interest. In this paper, we formulate the task-specific network discovery problem as a sequential decision-making problem. Our downstream task is selective harvesting, the optimal collection of vertices with a particular attribute. We propose a framework, called network actor critic (NAC), which learns a policy and notion of future reward in an offline setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-specific network embedding to reduce the state space complexity. A detailed comparative analysis of popular network embeddings is presented with respect to their role in supporting offline planning. Furthermore, a quantitative study is presented on various synthetic and real benchmarks using NAC and several baselines. We show that offline models of reward and network discovery policies lead to significantly improved performance when compared to competitive online discovery algorithms. Finally, we outline learning regimes where planning is critical in addressing sparse and changing reward signals.
READ LESS

Summary

Complex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream...

READ MORE

Towards a distributed framework for multi-agent reinforcement learning research

Summary

Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into the limits of these approaches as computation increases. In this paper, we present a distributed RL training framework designed for super computing infrastructures such as the MIT SuperCloud. We review a collection of challenging learning environments—such as Google Research Football, StarCraft II, and Multi-Agent Mujoco— which are at the frontier of reinforcement learning research. We provide results on these environments that illustrate the current state of the field on these problems. Finally, we also quantify and discuss the computational requirements needed for performing RL research by enumerating all experiments performed on these environments.
READ LESS

Summary

Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into...

READ MORE

Deep implicit coordination graphs for multi-agent reinforcement learning [e-print]

Summary

Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise in their design. This paper introduces the deep implicit coordination graph (DICG) architecture for such scenarios. DICG consists of a module for inferring the dynamic coordination graph structure which is then used by a graph neural network based module to learn to implicitly reason about the joint actions or values. DICG allows learning the tradeoff between full centralization and decentralization via standard actor-critic methods to significantly improve coordination for domains with large number of agents. We apply DICG to both centralized-training-centralized-execution and centralized-training-decentralized-execution regimes. We demonstrate that DICG solves the relative overgeneralization pathology in predatory-prey tasks as well as outperforms various MARL baselines on the challenging StarCraft II Multi-agent Challenge (SMAC) and traffic junction environments.
READ LESS

Summary

Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise...

READ MORE

Feature forwarding for efficient single image dehazing

Published in:
IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops, CVPRW, 16-17 June 2019.

Summary

Haze degrades content and obscures information of images, which can negatively impact vision-based decision-making in real-time systems. In this paper, we propose an efficient fully convolutional neural network (CNN) image dehazing method designed to run on edge graphical processing units (GPUs). We utilize three variants of our architecture to explore the dependency of dehazed image quality on parameter count and model design. The first two variants presented, a small and big version, make use of a single efficient encoder–decoder convolutional feature extractor. The final variant utilizes a pair of encoder-decoders for atmospheric light and transmission map estimation. Each variant ends with an image refinement pyramid pooling network to form the final dehazed image. For the big variant of the single-encoder network, we demonstrate state-of-the-art performance on the NYU Depth dataset. For the small variant, we maintain competitive performance on the superresolution O/I-HAZE datasets without the need for image cropping. Finally, we examine some challenges presented by the Dense-Haze dataset when leveraging CNN architectures for dehazing of dense haze imagery and examine the impact of loss function selection on image quality. Benchmarks are included to show the feasibility of introducing this approach into real-time systems.
READ LESS

Summary

Haze degrades content and obscures information of images, which can negatively impact vision-based decision-making in real-time systems. In this paper, we propose an efficient fully convolutional neural network (CNN) image dehazing method designed to run on edge graphical processing units (GPUs). We utilize three variants of our architecture to explore...

READ MORE

Showing Results

1-4 of 4