Publications

Refine Results

(Filters Applied) Clear All

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data: proof of concept in non-human primates

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices. Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device. Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures – a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation – a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001. Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host’s immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.
READ LESS

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First...

READ MORE

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states during the incubation period using subtle, sub-clinical physiological markers. Starting with highresolution physiological waveform data from non-human primate studies of viral (Ebola, Marburg, Lassa, and Nipah viruses) and bacterial (Y. pestis) exposure, we processed the data to reduce short-term variability and normalize diurnal variations, then provided these to a supervised random forest classification algorithm and post-classifier declaration logic step to reduce false alarms. In most subjects detection is achieved well before the onset of fever; subject cross-validation across exposure studies (varying viruses, exposure routes, animal species, and target dose) lead to 51h mean early detection (at 0.93 area under the receiver-operating characteristic curve [AUCROC]). Evaluating the algorithm against entirely independent datasets for Lassa, Nipah, and Y. pestis exposures un-used in algorithm training and development yields a mean 51h early warning time (at AUCROC=0.95). We discuss which physiological indicators are most informative for early detection and options for extending this capability to limited datasets such as those available from wearable, non-invasive, ECG-based sensors.
READ LESS

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states...

READ MORE

Detecting virus exposure during the pre-symptomatic incubation period using physiological data

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning method to better detect asymptomatic states during the incubation period using subtle, sub-clinical physiological markers. Using high-resolution physiological data from non-human primate studies of Ebola and Marburg viruses, we pre-processed the data to reduce short-term variability and normalize diurnal variations, then provided these to a supervised random forest classification algorithm. In most subjects detection is achieved well before the onset of fever; subject cross-validation lead to 52±14h mean early detection (at >0.90 area under the receiver-operating characteristic curve). Cross-cohort tests across pathogens and exposure routes also lead to successful early detection (28±16h and 43±22h, respectively). We discuss which physiological indicators are most informative for early detection and options for extending this capability to lower data resolution and wearable, non-invasive sensors.
READ LESS

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning method to better detect asymptomatic states during...

READ MORE

Building low-power trustworthy systems: cyber-security considerations for real-time physiological status monitoring

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned framework for integrating multiple wearable sensors and applications. The OBAN implementation accepts data from various sensors enabling calculation of physiological strain information which may be used by squad leaders or medics to assess the team's health and enhance safety and effectiveness of mission execution. Security in terms of measurement integrity, confidentiality, and authenticity is an area of interest because OBAN system components exchange sensitive data in contested environments. In this paper, we analyze potential cyber-security threats and their associated risks to a generalized version of the OBAN architecture and identify directions for future research. The threat analysis is intended to inform the development of secure RT-PSM architectures and implementations.
READ LESS

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned...

READ MORE

Showing Results

1-4 of 4