Publications

Refine Results

(Filters Applied) Clear All

Information Aware max-norm Dirichlet networks for predictive uncertainty estimation

Published in:
Neural Netw., Vol. 135, 2021, pp. 105–114.

Summary

Precise estimation of uncertainty in predictions for AI systems is a critical factor in ensuring trust and safety. Deep neural networks trained with a conventional method are prone to over-confident predictions. In contrast to Bayesian neural networks that learn approximate distributions on weights to infer prediction confidence, we propose a novel method, Information Aware Dirichlet networks, that learn an explicit Dirichlet prior distribution on predictive distributions by minimizing a bound on the expected max norm of the prediction error and penalizing information associated with incorrect outcomes. Properties of the new cost function are derived to indicate how improved uncertainty estimation is achieved. Experiments using real datasets show that our technique outperforms, by a large margin, state-of-the-art neural networks for estimating within-distribution and out-of-distribution uncertainty, and detecting adversarial examples.
READ LESS

Summary

Precise estimation of uncertainty in predictions for AI systems is a critical factor in ensuring trust and safety. Deep neural networks trained with a conventional method are prone to over-confident predictions. In contrast to Bayesian neural networks that learn approximate distributions on weights to infer prediction confidence, we propose a...

READ MORE

Failure prediction by confidence estimation of uncertainty-aware Dirichlet networks

Published in:
https://arxiv.org/abs/2010.09865

Summary

Reliably assessing model confidence in deep learning and predicting errors likely to be made are key elements in providing safety for model deployment, in particular for applications with dire consequences. In this paper, it is first shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence of correct and incorrect predictions in the true class probability (TCP) metric. Second, as the true class is unknown at test time, a new criterion is proposed for learning the true class probability by matching prediction confidence scores while taking imbalance and TCP constraints into account for correct predictions and failures. Experimental results show our method improves upon the maximum class probability (MCP) baseline and predicted TCP for standard networks on several image classification tasks with various network architectures.
READ LESS

Summary

Reliably assessing model confidence in deep learning and predicting errors likely to be made are key elements in providing safety for model deployment, in particular for applications with dire consequences. In this paper, it is first shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence...

READ MORE

A multi-task LSTM framework for improved early sepsis prediction

Published in:
Proc. Artificial Intelligence in Medicine, AIME, 2020, pp. 49-58.

Summary

Early detection for sepsis, a high-mortality clinical condition, is important for improving patient outcomes. The performance of conventional deep learning methods degrades quickly as predictions are made several hours prior to the clinical definition. We adopt recurrent neural networks (RNNs) to improve early prediction of the onset of sepsis using times series of physiological measurements. Furthermore, physiological data is often missing and imputation is necessary. Absence of data might arise due to decisions made by clinical professionals which carries information. Using the missing data patterns into the learning process can further guide how much trust to place on imputed values. A new multi-task LSTM model is proposed that takes informative missingness into account during training that effectively attributes trust to temporal measurements. Experimental results demonstrate our method outperforms conventional CNN and LSTM models on the PhysioNet-2019 CiC early sepsis prediction challenge in terms of area under receiver-operating curve and precision-recall curve, and further improves upon calibration of prediction scores.
READ LESS

Summary

Early detection for sepsis, a high-mortality clinical condition, is important for improving patient outcomes. The performance of conventional deep learning methods degrades quickly as predictions are made several hours prior to the clinical definition. We adopt recurrent neural networks (RNNs) to improve early prediction of the onset of sepsis using...

READ MORE

Showing Results

1-3 of 3