Publications

Refine Results

(Filters Applied) Clear All

Predicting ankle moment trajectory with adaptive weighted ensemble of LSTM network

Published in:
2022 IEEE High Perf. Extreme Comp. Conf. (HPEC), 19-23 September 2022, DOI: 10.1109/HPEC55821.2022.9926370.

Summary

Estimations of ankle moments can provide clinically helpful information on the function of lower extremities and further lead to insight on patient rehabilitation and assistive wearable exoskeleton design. Current methods for estimating ankle moments leave room for improvement, with most recent cutting-edge methods relying on machine learning models trained on wearable sEMG and IMU data. While machine learning eliminates many practical challenges that troubled more traditional human body models for this application, we aim to expand on prior work that showed the feasibility of using LSTM models by employing an ensemble of LSTM networks. We present an adaptive weighted LSTM ensemble network and demonstrate its performance during standing, walking, running, and sprinting. Our result show that the LSTM ensemble outperformed every single LSTM model component within the ensemble. Across every activity, the ensemble reduced median root mean squared error (RMSE) by 0.0017-0.0053 N. m/kg, which is 2.7 – 10.3% lower than the best performing single LSTM model. Hypothesis testing revealed that most reductions in RMSE were statistically significant between the ensemble and other single models across all activities and subjects. Future work may analyze different trajectory lengths and different combinations of LSTM submodels within the ensemble.
READ LESS

Summary

Estimations of ankle moments can provide clinically helpful information on the function of lower extremities and further lead to insight on patient rehabilitation and assistive wearable exoskeleton design. Current methods for estimating ankle moments leave room for improvement, with most recent cutting-edge methods relying on machine learning models trained on...

READ MORE

Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models

Published in:
43rd Annual Intl. Conf. of the IEEE Engineering in Medicine & Biology, 31 October 2021-4 November 2021.

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning techniques applied to machine learning models afford the ability to apply and investigate the viability and utility such knowledge-transfer scenarios. This paper investigates the utility of single- and multi-subject based parameter transfer on LSTM models trained for "sensor-to-joint torque" prediction tasks, with regards to task performance and computational resources required for network training. We find that parameter transfer between both single- and multi-subject models provide useful knowledge transfer, with varying results across specific "source" and "target" subject pairings. This could be leveraged to lower model training time or computational cost in compute-constrained environments or, with further study to understand causal factors of the observed variance in performance across source and target pairings, to minimize data collection and model retraining requirements to select and personalize a generic model for personalized wearable-sensor-based joint torque prediction technologies.
READ LESS

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning...

READ MORE

A neural network estimation of ankle torques from electromyography and accelerometry

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque estimates and sequences of torque predictions from motion capture and ground reaction forces to wearable sensor data using several modern types of neural networks. We use dense feedforward, convolutional, neural ordinary differential equation, and long short-term memory neural networks to learn the mapping for ankle plantarflexion and dorsiflexion torque during standing,walking, running, and sprinting, and consider both single-point torque estimation, as well as the prediction of a sequence of future torques. Our results show that long short-term memory neural networks, which consider incoming data sequentially, outperform dense feedforward, neural ordinary differential equation networks, and convolutional neural networks. Predictions of future ankle torques up to 0.4 s ahead also showed strong positive correlations with the actual torques. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data.
READ LESS

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...

READ MORE

Ankle torque estimation during locomotion from surface electromyography and accelerometry

Published in:
2020 8th IEEE Intl. Conf. on Biomedical Robotics and Biomechatronics, BioRob, 29 November - 1 December 2020.

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction forces. Wearable sensor data combined with neural networks may offer a less expensive and obtrusive estimation method.We present a method of mapping joint torque estimates obtained from motion capture and ground reaction forces to wearable sensor data. We use several different neural networks to learn the torque mapping for the ankle joints during standing, walking, running, and sprinting. Our results show that neural networks that consider time (recurrent and long short-term memory networks) outperform feedforward network architectures, producing results in the range of 0.005-0.008 N m/kg mean squared error (MSE) when compared to the inverse dynamics model on which it was trained. As a point of reference, the typical measurement errors from inverse dynamics models are in the range of 0.0004-0.0064 N m/kg MSE. Errors tended to increase with locomotion speed, with the highest errors during sprinting and the lowest during standing or walking. Future work may investigate model generalizability across sensor placements, subjects, locomotion variants, and usage duration. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data. These methods also have potential uses for the design and testing of wearable robotic systems outside of a laboratory environment.
READ LESS

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction...

READ MORE

A multi-task LSTM framework for improved early sepsis prediction

Summary

Early detection for sepsis, a high-mortality clinical condition, is important for improving patient outcomes. The performance of conventional deep learning methods degrades quickly as predictions are made several hours prior to the clinical definition. We adopt recurrent neural networks (RNNs) to improve early prediction of the onset of sepsis using times series of physiological measurements. Furthermore, physiological data is often missing and imputation is necessary. Absence of data might arise due to decisions made by clinical professionals which carries information. Using the missing data patterns into the learning process can further guide how much trust to place on imputed values. A new multi-task LSTM model is proposed that takes informative missingness into account during training that effectively attributes trust to temporal measurements. Experimental results demonstrate our method outperforms conventional CNN and LSTM models on the PhysioNet-2019 CiC early sepsis prediction challenge in terms of area under receiver-operating curve and precision-recall curve, and further improves upon calibration of prediction scores.
READ LESS

Summary

Early detection for sepsis, a high-mortality clinical condition, is important for improving patient outcomes. The performance of conventional deep learning methods degrades quickly as predictions are made several hours prior to the clinical definition. We adopt recurrent neural networks (RNNs) to improve early prediction of the onset of sepsis using...

READ MORE

The Human Trafficking Technology Roadmap: a targeted development strategy for the Department of Homeland Security

Summary

Human trafficking is a form of modern-day slavery that involves the use of force, fraud, or coercion for the purposes of involuntary labor and sexual exploitation. It affects tens of million of victims worldwide and generates tens of billions of dollars in illicit profits annually. While agencies across the U.S. Government employ a diverse range of resources to combat human trafficking in the U.S. and abroad, trafficking operations remain challenging to measure, investigate, and interdict. Within the Department of Homeland Security, the Science and Technology Directorate is addressing these challenges by incorporating computational social science research into their counter-human trafficking approach. As part of this approach, the Directorate tasked an interdisciplinary team of national security researchers at the Massachusetts Institute of Technology's Lincoln Laboratory, a federally funded research and development center, to undertake a detailed examination of the human trafficking response across the Homeland Security Enterprise. The first phase of this effort was a government-wide systems analysis of major counter-trafficking thrust areas, including law enforcement and prosecution; public health and emergency medicine; victim services; and policy and legislation. The second phase built on this systems analysis to develop a human trafficking technology roadmap and implementation strategy for the Science and Technology Directorate, which is presented in this document.
READ LESS

Summary

Human trafficking is a form of modern-day slavery that involves the use of force, fraud, or coercion for the purposes of involuntary labor and sexual exploitation. It affects tens of million of victims worldwide and generates tens of billions of dollars in illicit profits annually. While agencies across the U.S...

READ MORE

Showing Results

1-6 of 6