Publications

Refine Results

(Filters Applied) Clear All

Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models

Published in:
43rd Annual Intl. Conf. of the IEEE Engineering in Medicine & Biology, 31 October 2021-4 November 2021.

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning techniques applied to machine learning models afford the ability to apply and investigate the viability and utility such knowledge-transfer scenarios. This paper investigates the utility of single- and multi-subject based parameter transfer on LSTM models trained for "sensor-to-joint torque" prediction tasks, with regards to task performance and computational resources required for network training. We find that parameter transfer between both single- and multi-subject models provide useful knowledge transfer, with varying results across specific "source" and "target" subject pairings. This could be leveraged to lower model training time or computational cost in compute-constrained environments or, with further study to understand causal factors of the observed variance in performance across source and target pairings, to minimize data collection and model retraining requirements to select and personalize a generic model for personalized wearable-sensor-based joint torque prediction technologies.
READ LESS

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning...

READ MORE

A neural network estimation of ankle torques from electromyography and accelerometry

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque estimates and sequences of torque predictions from motion capture and ground reaction forces to wearable sensor data using several modern types of neural networks. We use dense feedforward, convolutional, neural ordinary differential equation, and long short-term memory neural networks to learn the mapping for ankle plantarflexion and dorsiflexion torque during standing,walking, running, and sprinting, and consider both single-point torque estimation, as well as the prediction of a sequence of future torques. Our results show that long short-term memory neural networks, which consider incoming data sequentially, outperform dense feedforward, neural ordinary differential equation networks, and convolutional neural networks. Predictions of future ankle torques up to 0.4 s ahead also showed strong positive correlations with the actual torques. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data.
READ LESS

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...

READ MORE

Ablation analysis to select wearable sensors for classifying standing, walking, and running

Summary

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable sensor data. An ablation analysis is performed in order to select the subset of sensors that yield the highest classification accuracy. The paper also compares principal components across trials to inform the similarity of the trials. Five subjects were instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the data were recorded while using surface electromyography sensors (sEMGs), inertial measurement units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90% classification accuracy using only the first three principal components of the data with the classes of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg. There was a small decrease in accuracy when the force plates are ablated, but the difference may not be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the accuracy of the SVM.
READ LESS

Summary

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable...

READ MORE

Ankle torque estimation during locomotion from surface electromyography and accelerometry

Published in:
2020 8th IEEE Intl. Conf. on Biomedical Robotics and Biomechatronics, BioRob, 29 November - 1 December 2020.

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction forces. Wearable sensor data combined with neural networks may offer a less expensive and obtrusive estimation method.We present a method of mapping joint torque estimates obtained from motion capture and ground reaction forces to wearable sensor data. We use several different neural networks to learn the torque mapping for the ankle joints during standing, walking, running, and sprinting. Our results show that neural networks that consider time (recurrent and long short-term memory networks) outperform feedforward network architectures, producing results in the range of 0.005-0.008 N m/kg mean squared error (MSE) when compared to the inverse dynamics model on which it was trained. As a point of reference, the typical measurement errors from inverse dynamics models are in the range of 0.0004-0.0064 N m/kg MSE. Errors tended to increase with locomotion speed, with the highest errors during sprinting and the lowest during standing or walking. Future work may investigate model generalizability across sensor placements, subjects, locomotion variants, and usage duration. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data. These methods also have potential uses for the design and testing of wearable robotic systems outside of a laboratory environment.
READ LESS

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction...

READ MORE

Showing Results

1-4 of 4