Publications

Refine Results

(Filters Applied) Clear All

Alternative cue and response modalities maintain the Simon effect but impact task performance

Published in:
Appl. Ergon., Vol. 100, 2022, 103648.

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational applicability of the Simon task beyond finger/hand manipulations and visual/auditory cues is unclear, but important to consider as new technologies provide tactile cues and require motor responses from the lower extremity (e.g., exoskeletons). In this study, twenty participants completed the Simon task under four conditions, each combination of two cue (visual/tactile) and response (upper/lower-extremity) modalities. RT were significantly longer for incongruent than congruent cues across cue-response pairs. However, alternative cue-response pairs yielded slower RT and decreased accuracy for tactile cues and lower extremity responses. Results support operational usage of the Simon task to probe inhibition using tactile cues and lower-extremity responses relevant for new technologies like exoskeletons and immersive environments.
READ LESS

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational...

READ MORE

Ablation analysis to select wearable sensors for classifying standing, walking, and running

Summary

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable sensor data. An ablation analysis is performed in order to select the subset of sensors that yield the highest classification accuracy. The paper also compares principal components across trials to inform the similarity of the trials. Five subjects were instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the data were recorded while using surface electromyography sensors (sEMGs), inertial measurement units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90% classification accuracy using only the first three principal components of the data with the classes of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg. There was a small decrease in accuracy when the force plates are ablated, but the difference may not be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the accuracy of the SVM.
READ LESS

Summary

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable...

READ MORE

Showing Results

1-2 of 2