Publications

Refine Results

(Filters Applied) Clear All

More than a fair share: Network Data Remanence attacks against secret sharing-based schemes [early access]

Published in:
Network and Distributed Systems Security Symp., NDSS, 23-26 February 2021.

Summary

With progress toward a practical quantum computer has come an increasingly rapid search for quantum-safe, secure communication schemes that do not rely on discrete logarithm or factorization problems. One such encryption scheme, Multi-path Switching with Secret Sharing (MSSS), combines secret sharing with multi-path switching to achieve security as long as the adversary does not have global observability of all paths and thus cannot capture enough shares to reconstruct messages. MSSS assumes that sending a share on a path is an atomic operation and all paths have the same delay. In this paper, we identify a side-channel vulnerability for MSSS, created by the fact that in real networks, sending a share is not an atomic operation as paths have multiple hops and different delays. This channel, referred to as Network Data Remanence (NDR), is present in all schemes like MSSS whose security relies on transfer atomicity and all paths having same delay. We demonstrate the presence of NDR in a physical testbed. We then identify two new attacks that aim to exploit the side channel, referred to as NDR Blind and NDR Planned, propose an analytical model to analyze the attacks, and demonstrate them using an implementation of MSSS based on the ONOS SDN controller. Finally, we present a countermeasure for the attacks and show its effectiveness in simulations and Mininet experiments.
READ LESS

Summary

With progress toward a practical quantum computer has come an increasingly rapid search for quantum-safe, secure communication schemes that do not rely on discrete logarithm or factorization problems. One such encryption scheme, Multi-path Switching with Secret Sharing (MSSS), combines secret sharing with multi-path switching to achieve security as long as...

READ MORE

Cross-app poisoning in software-defined networking

Published in:
Proc. ACM Conf. on Computer and Communications Security, CCS, 15-18 October 2018, pp. 648-63.

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane's integrity. We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.
READ LESS

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of...

READ MORE

Showing Results

1-2 of 2