Publications

Refine Results

(Filters Applied) Clear All

Securing the satellite software stack

Published in:
Workshop on Security of Space and Satellite Systems, SpaceSec, 1 March 2024.

Summary

Satellites and the services enabled by them, like GPS, real-time world-wide imaging, weather tracking, and worldwide communication, play an increasingly important role in modern life. To support these services satellite software is becoming increasingly complex and connected. As a result, concerns about its security are becoming prevalent. While the focus of security for satellites has historically been on encrypting the communications link, we argue that a fuller consideration of the security of satellites is necessary and presents unique challenges. Satellites are becoming increasingly accessible to attackers–thanks to supply chain attacks and Internet connected ground stations–and present a unique set of challenges for security practitioners. These challenges include the lack of any real ability for a human to be physically present to repair or recover these systems, a focus on safety and availability over confidentiality and integrity, and the need to deal with radiation-induced faults. This work characterizes the cyber threats to satellite systems, surveys the unique challenges for satellite software, and presents a future vision for research in this area.
READ LESS

Summary

Satellites and the services enabled by them, like GPS, real-time world-wide imaging, weather tracking, and worldwide communication, play an increasingly important role in modern life. To support these services satellite software is becoming increasingly complex and connected. As a result, concerns about its security are becoming prevalent. While the focus...

READ MORE

Holding the high ground: Defending satellites from cyber attack

Published in:
The Cyber Edge by Signal, 31 March 2023.

Summary

MIT Lincoln Laboratory and the Space Cyber-Resiliency group at Air Force Research Laboratory-Space Vehicles Directorate have prototyped a practical, operationally capable and secure-by-design spaceflight software platform called Cyber-Hardened Satellite Software (CHSS) for building space mission applications with security, recoverability and performance as first-class system design priorities. Following a successful evaluation of CHSS against an existing U.S. Space Force (USSF) mission, the CHSS platform is currently being extended to support hybrid space vehicle architectures that incorporate both CHSS-aware and legacy subsystems. CHSS has the potential to revolutionize the cyber-resiliency of space systems and substantially ease the burden of defensive cyber operations (DCO).
READ LESS

Summary

MIT Lincoln Laboratory and the Space Cyber-Resiliency group at Air Force Research Laboratory-Space Vehicles Directorate have prototyped a practical, operationally capable and secure-by-design spaceflight software platform called Cyber-Hardened Satellite Software (CHSS) for building space mission applications with security, recoverability and performance as first-class system design priorities. Following a successful evaluation...

READ MORE

The thundering herd: Amplifying kernel interference to attack response times

Published in:
2022 IEEE 28th Real-Time and Embedded Technology and Applications Symp., RTAS, 4-6 May 2022.

Summary

Embedded and real-time systems are increasingly attached to networks. This enables broader coordination beyond the physical system, but also opens the system to attacks. The increasingly complex workloads of these systems include software of varying assurance levels, including that which might be susceptible to compromise by remote attackers. To limit the impact of compromise, u-kernels focus on maintaining strong memory protection domains between different bodies of software, including system services. They enable limited coordination between processes through Inter-Process Communication (IPC). Real-time systems also require strong temporal guarantees for tasks, and thus need temporal isolation to limit the impact of malicious software. This is challenging as multiple client threads that use IPC to request service from a shared server will impact each other's response times. To constrain the temporal interference between threads, modern u-kernels often build priority and budget awareness into the system. Unfortunately, this paper demonstrates that this is more challenging than previously thought. Adding priority awareness to IPC processing can lead to significant interference due to the kernel's prioritization logic. Adding budget awareness similarly creates opportunities for interference due to the budget tracking and management operations. In both situations, a Thundering Herd of malicious threads can significantly delay the activation of mission-critical tasks. The Thundering Herd effects are evaluated on seL4 and results demonstrate that high-priority threads can be delayed by over 100,000 cycles per malicious thread. This paper reveals a challenging dilemma: the temporal protections u-kernels add can, themselves, provide means of threatening temporal isolation. Finally, to defend the system, we identify and empirically evaluate possible mitigations, and propose an admission-control test based upon an interference-aware analysis.
READ LESS

Summary

Embedded and real-time systems are increasingly attached to networks. This enables broader coordination beyond the physical system, but also opens the system to attacks. The increasingly complex workloads of these systems include software of varying assurance levels, including that which might be susceptible to compromise by remote attackers. To limit...

READ MORE

Practical principle of least privilege for secure embedded systems

Published in:
2021 IEEE 27th Real-Time and Embedded Technology and Applications Symp., RTAS. 18-21 May 2021.

Summary

Many embedded systems have evolved from simple bare-metal control systems to highly complex network-connected systems. These systems increasingly demand rich and feature-full operating-systems (OS) functionalities. Furthermore, the network connectedness offers attack vectors that require stronger security designs. To that end, this paper defines a prototypical RTOS API called Patina that provides services common in featurerich OSes (e.g., Linux) but absent in more trustworthy u-kernel-based systems. Examples of such services include communication channels, timers, event management, and synchronization. Two Patina implementations are presented, one on Composite and the other on seL4, each of which is designed based on the Principle of Least Privilege (PoLP) to increase system security. This paper describes how each of these u-kernels affect the PoLP-based design, as well as discusses security and performance tradeoffs in the two implementations. Results of comprehensive evaluations demonstrate that the performance of the PoLP-based implementation of Patina offers comparable or superior performance to Linux, while offering heightened isolation.
READ LESS

Summary

Many embedded systems have evolved from simple bare-metal control systems to highly complex network-connected systems. These systems increasingly demand rich and feature-full operating-systems (OS) functionalities. Furthermore, the network connectedness offers attack vectors that require stronger security designs. To that end, this paper defines a prototypical RTOS API called Patina that...

READ MORE

One giant leap for computer security

Summary

Today's computer systems trace their roots to an era of trusted users and highly constrained hardware; thus, their designs fundamentally emphasize performance and discount security. This article presents a vision for how small steps using existing technologies can be combined into one giant leap for computer security.
READ LESS

Summary

Today's computer systems trace their roots to an era of trusted users and highly constrained hardware; thus, their designs fundamentally emphasize performance and discount security. This article presents a vision for how small steps using existing technologies can be combined into one giant leap for computer security.

READ MORE

Automated discovery of cross-plane event-based vulnerabilities in software-defined networking

Summary

Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers' functionality. As control plane decisions are often based on the data plane, it is possible for carefully crafted malicious data plane inputs to direct the control plane towards unwanted states that bypass network security restrictions (i.e., cross-plane attacks). Unfortunately, because of the complex interplay among controllers, apps, and data plane inputs, at present it is difficult to systematically identify and analyze these cross-plane vulnerabilities. We present EVENTSCOPE, a vulnerability detection tool that automatically analyzes SDN control plane event usage, discovers candidate vulnerabilities based on missing event-handling routines, and validates vulnerabilities based on data plane effects. To accurately detect missing event handlers without ground truth or developer aid, we cluster apps according to similar event usage and mark inconsistencies as candidates. We create an event flow graph to observe a global view of events and control flows within the control plane and use it to validate vulnerabilities that affect the data plane. We applied EVENTSCOPE to the ONOS SDN controller and uncovered 14 new vulnerabilities.
READ LESS

Summary

Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers' functionality. As control plane decisions are often based on the data plane, it is possible for carefully crafted malicious data plane inputs to direct the...

READ MORE

The leakage-resilience dilemma

Published in:
Proc. European Symp. on Research in Computer Security, ESORICS 2019, pp. 87-106.

Summary

Many control-flow-hijacking attacks rely on information leakage to disclose the location of gadgets. To address this, several leakage-resilient defenses, have been proposed that fundamentally limit the power of information leakage. Examples of such defenses include address-space re-randomization, destructive code reads, and execute-only code memory. Underlying all of these defenses is some form of code randomization. In this paper, we illustrate that randomization at the granularity of a page or coarser is not secure, and can be exploited by generalizing the idea of partial pointer overwrites, which we call the Relative ROP (RelROP) attack. We then analyzed more that 1,300 common binaries and found that 94% of them contained sufficient gadgets for an attacker to spawn a shell. To demonstrate this concretely, we built a proof-of-concept exploit against PHP 7.0.0. Furthermore, randomization at a granularity finer than a memory page faces practicality challenges when applied to shared libraries. Our findings highlight the dilemma that faces randomization techniques: course-grained techniques are efficient but insecure and fine-grained techniques are secure but impractical.
READ LESS

Summary

Many control-flow-hijacking attacks rely on information leakage to disclose the location of gadgets. To address this, several leakage-resilient defenses, have been proposed that fundamentally limit the power of information leakage. Examples of such defenses include address-space re-randomization, destructive code reads, and execute-only code memory. Underlying all of these defenses is...

READ MORE

Security considerations for next-generation operating systems for cyber-physical systems

Published in:
1st Intl. Workshop on Next-Generation Operating Systems for Cyber-Physical Systems, NGOSCPS, 15 April 2019.

Summary

Cyber-physical systems (CPSs) are increasingly targeted in high-profile cyber attacks. Examples of such attacks include Stuxnet, which targeted nuclear centrifuges; Crashoverride, and Triton, which targeted power grids; and the Mirai botnet, which targeted internet-of-things (IoT) devices such as cameras to carry out a large-scale distributed denial-of-service (DDoS) attack. Such attacks demonstrate the importance of securing current and future cyber-physical systems. Therefore, next-generation operating systems (OSes) for CPS need to be designed to provide security features necessary, as well as be secure in and of themselves. CPSs are designed with one of three broad classes of OSes: (a) bare-metal applications with effectively no operating system, (b) embedded systems executing on impoverished platforms running an embedded or real-time operating system (RTOS) such as FreeRTOS, or (c) more performant platforms running general purpose OSes such as Linux, sometimes tuned for real-time performance such as through the PREEMPT_RT patch. In cases (a) and (b), the OS, if any, is very minimal to facilitate improved resource utilization in real-time or latency-sensitive applications, especially running on impoverished hardware platforms. In such OSes, security is often overlooked, and many important security features (e.g. process/kernel memory isolation) are notably absent. In case (c), the general-purpose OS inherits many of the security-related features that are critical in enterprise and general-purpose applications, such as virtual memory and address-space layout randomization (ASLR). However, the highly complex nature of general-purpose OSes can be problematic in the development of CPSs, as they are highly non-deterministic and difficult to formally reason about for cyber-physical applications, which often have real-time constraints. These issues motivate the need for a next generation OS that is highly capable, predictable and deterministic for real-time performance, but also secure in the face of many of the next generation of cyber threats. In order to design such a next-generation OS, it is necessary to first reflect on the types of threats that CPSs face, including the attacker intentions and types of effects that can be achieved, as well as the type of access that attackers have. While threat models are not the same for all CPSs, it is important to understand how the threat models for CPSs compare to general-purpose or enterprise computing environments. We discuss these issues next (Sec. 2), before providing insights and recommendations for approaches to incorporate in next-generation OSes for CPS in Sec. 3.
READ LESS

Summary

Cyber-physical systems (CPSs) are increasingly targeted in high-profile cyber attacks. Examples of such attacks include Stuxnet, which targeted nuclear centrifuges; Crashoverride, and Triton, which targeted power grids; and the Mirai botnet, which targeted internet-of-things (IoT) devices such as cameras to carry out a large-scale distributed denial-of-service (DDoS) attack. Such attacks...

READ MORE

Guidelines for secure small satellite design and implementation: FY18 Cyber Security Line-Supported Program

Summary

We are on the cusp of a computational renaissance in space, and we should not bring past terrestrial missteps along. Commercial off-the-shelf (COTS) processors -- much more powerful than traditional rad-hard devices -- are increasingly used in a variety of low-altitude, short-duration CubeSat class missions. With this new-found headroom, the incessant drumbeat of "faster, cheaper, faster, cheaper" leads a familiar march towards Linux and a menagerie of existing software packages, each more bloated and challenging to secure than the last. Lincoln Laboratory has started a pilot effort to design and prototype an exemplar secure satellite processing platform, initially geared toward CubeSats but with a clear path to larger missions and future high performance rad-hard processors. The goal is to provide engineers a secure "grab-and-go" architecture that doesn't unduly hamstring aggressive build timelines yet still provides a foundation of security that can serve adopting systems well, as well as future systems derived from them. This document lays out the problem space for cybersecurity in this domain, derives design guidelines for future secure space systems, proposes an exemplar architecture that implements the guidelines, and provides a solid starting point for near-term and future satellite processing.
READ LESS

Summary

We are on the cusp of a computational renaissance in space, and we should not bring past terrestrial missteps along. Commercial off-the-shelf (COTS) processors -- much more powerful than traditional rad-hard devices -- are increasingly used in a variety of low-altitude, short-duration CubeSat class missions. With this new-found headroom, the...

READ MORE

Cross-app poisoning in software-defined networking

Published in:
Proc. ACM Conf. on Computer and Communications Security, CCS, 15-18 October 2018, pp. 648-63.

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane's integrity. We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.
READ LESS

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of...

READ MORE

Showing Results

1-10 of 12