Publications
Tagged As
Network performance of pLEO topologies in a high-inclination Walker Delta Satellite Constellation
Summary
Summary
Low-earth-orbit satellite constellations with hundreds to thousands of satellites are emerging as practical alternatives for providing various types of data services such as global networking and large-scale sensing. The network performance of these satellite constellations is strongly dependent on the topology of the inter-satellite links (ISLs) in such systems. This...
Contingent routing using orbital geometry in proliferated low-earth-orbit satellite networks
Summary
Summary
Optimum adaptive routing in proliferated low-earth-orbit (pLEO) satellite networks requires intensive computation. The very small size, light weight, and low power of individual satellites in such networks makes a centralized, terrestrial, SDN-like approach to routing computation an attractive solution. However, it is highly desirable to have a distributed backup routing...
Failure resilience in proliferated low earth orbit satellite network topologies
Summary
Summary
The vision of continuous network connectivity for users located anywhere on Earth is increasingly being enabled by satellite constellations with hundreds to thousands of satellites operating in low altitude orbits (typically somewhere between a few hundred and two thousand km). These constellations are often referred to as proliferated Low Earth...
Guidelines for secure small satellite design and implementation: FY18 Cyber Security Line-Supported Program
Summary
Summary
We are on the cusp of a computational renaissance in space, and we should not bring past terrestrial missteps along. Commercial off-the-shelf (COTS) processors -- much more powerful than traditional rad-hard devices -- are increasingly used in a variety of low-altitude, short-duration CubeSat class missions. With this new-found headroom, the...
Nanosatellites for Earth environmental monitoring: the MicroMAS project
Summary
Summary
The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately...
Convection diagnosis and nowcasting for oceanic aviation applications
Summary
Summary
An oceanic convection diagnosis and nowcasting system is described whose domain of interest is the region between the southern continental United States and the northern extent of South America. In this system, geostationary satellite imagery are used to define the locations of deep convective clouds through the weighted combination of...
Hyperspectral environmental suite for the Geostationary Operational Environmental Satellite (GOES)
Summary
Summary
The GOES satellites will fly a Hyperspectral Environmental Suite (HES) on GOES-R in the 2012 timeframe. The approximately 1500 spectral channels (technically ultraspectral), leading to improved vertical resolution, and approximately five times faster coverage rate planned for the sounder in this suite will greatly exceed the capabilities of the current...
Summary of the EO-1 ALI performance during the first 2.5 years on-orbit
Summary
Summary
The Advanced Land Imager (ALI) is a VNIR/SWIR, pushbroom instrument that is flying aboard the Earth Observing-1 (EO-1) spacecraft. Launched on November 21, 2000, the objective of the ALI is to flight validate emerging technologies that can be infused into future land imaging sensors. During the first two and one-half...
Overview of the Earth Observing One (EO-1) mission
Summary
Summary
The Earth Observing One (EO-1) satellite, a part of National Aeronautics and Space Administration's New Millennium Program, was developed to demonstrate new technologies and strategies for improved earth observations. It was launched from Vandenburg Air Force Base on November 21, 2000. The EO-1 satellite contains three observing instruments supported by...
Flight test results of the Earth Observing-1 Advanced Land Imager
Summary
Summary
The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise...